Rank 3 Inhabitation of Intersection Types Revisited

Andrej Dudenhefner Jan Bessai Boris Düdder Jakob Rehof

Technical University of Dortmund, Germany

May 20, 2016

Contents

Intersection Type System

Intersection Type Inhabitation

 \bigcirc HTM \leq IHP

Intersection Type System (BCD)

- Characterizes normalization/strong normalization in λ-calculus [Pot80]
- Characterizes finite function tables [Sal+12]
- ullet Framework for the study of semantic domains for the λ -calculus
- Undecidable type checking (does the given term have the given type)
- Undecidable typability (w/o rule (ω)) (does the given term have any type)
- Undecidable inhabitation [Urz99]
 (is there any term having the given type)

Intersection Type System (BCD)

Definition (Intersection Types T)

$$\mathbb{T} \ni \sigma, \tau, \rho ::= \mathbf{a} \mid \omega \mid \sigma \to \tau \mid \sigma \cap \tau \quad \text{where } \mathbf{a} \in \mathbb{A}$$

Definition (Subtyping ≤)

Least preorder (reflexive and transitive relation) over $\ensuremath{\mathbb{T}}$ such that

$$\sigma \leq \omega, \quad \omega \leq \omega \to \omega, \quad \sigma \cap \tau \leq \sigma, \quad \sigma \cap \tau \leq \tau,$$
 $(\sigma \to \tau_1) \cap (\sigma \to \tau_2) \leq \sigma \to \tau_1 \cap \tau_2,$
if $\sigma \leq \tau_1$ and $\sigma \leq \tau_2$ then $\sigma \leq \tau_1 \cap \tau_2,$
if $\sigma_2 < \sigma_1$ and $\tau_1 < \tau_2$ then $\sigma_1 \to \tau_1 < \sigma_2 \to \tau_2$

Intersection Type System (BCD)

Definition (Type Assignment)
$$\frac{x:\tau\in\Gamma}{\Gamma\vdash x:\tau} \text{ (Ax)} \qquad \overline{\Gamma\vdash e:\omega} \text{ (ω)}$$

$$\frac{\Gamma,x:\sigma\vdash e:\tau}{\Gamma\vdash \lambda x.e:\sigma\to\tau} \text{ (\rightarrow)} \qquad \frac{\Gamma\vdash e:\sigma}{\Gamma\vdash e:\sigma\cap\tau} \text{ (\cap)}$$

$$\frac{\Gamma\vdash e:\sigma\to\tau}{\Gamma\vdash (e\:e'):\tau} \text{ (\rightarrowE)} \qquad \frac{\Gamma\vdash e:\sigma}{\Gamma\vdash e:\tau} \text{ (\triangleE)}$$

Intersection Type Inhabitation

```
Definition (\vdash? : \tau)
```

Given a type τ is there a λ -term \boldsymbol{e} such that $\vdash \boldsymbol{e} : \tau$?

Definition (Rank [Lei83])

```
\operatorname{rank}(\tau) = \mathbf{0} if \tau is a simple type \operatorname{rank}(\sigma \to \tau) = \operatorname{max}(\operatorname{rank}(\sigma) + 1, \operatorname{rank}(\tau))
\operatorname{rank}(\sigma \cap \tau) = \operatorname{max}(1, \operatorname{rank}(\sigma), \operatorname{rank}(\tau))
```

- \vdash ? : τ with $rank(\tau) \leq 2$ is EXPSPACE-complete [Urz09]
- \vdash ? : τ with $rank(\tau) \ge 3$ is undecidable [Urz09]

- Which features of BCD contribute to undecidability of inhabitation?
- Can BCD proof search simulate a Turing machine directly?
- Are there particular inhabitation instances which are hard to decide?

Approach in [BDS13] (Lambda Calculus with Types)

EQA
$$\leq$$
 ETW \leq WTG \leq IHP (15 pages w/o EQA theory)

- EQA Emptiness problem for queue automata
- ETW Emptiness problem for typewriter automata
- WTG Problem of winning a "tree game"
 - IHP Intersection type inhabitation problem
- [BDS13] Barendregt, Dekkers and Statman. "Lambda calculus with types". Cambridge University Press, 2013.

Approach in [Sal+12; Loa01]

WSTS
$$\leq$$
 LDF \leq IHP (7+3 pages)

- WSTS Word problem in semi-Thue systems
 - LDF λ -definability problem
 - IHP Intersection type inhabitation problem
- [Loa01] Loader. "The undecidability of λ -definability". Logic, Meaning and Computation. Springer Netherlands, 2001.
- [Sal+12] Salvati et al. "Loader and Urzyczyn are logically related". Automata, Languages, and Programming. Springer Berlin Heidelberg, 2012.

Approach in [Urz09]

ELBA
$$\leq$$
 SSTS1 \leq HETM \leq IHP (6 pages)

- ELBA Emptiness problem for linear bounded automata
- SSTS1 Problem of deciding whether there is a word that can be rewritten to 1s in a simple semi-Thue system
 - **HETM** Halting problem for expanding tape machines
 - IHP Intersection type inhabitation problem
- [Urz09] Urzyczyn. "Inhabitation of low-rank intersection types". Typed Lambda Calculi and Applications. Springer Berlin Heidelberg, 2009.

Problematic aspects

- Introduced machinery is highly specialized
- Multiple degrees of non-determinism, alternation, parallelism
- Instructions create new instructions (higher order memory)
- λ-definability requires model theory
- Difficult to pinpoint necessary aspects

Goal

$HTM \leq IHP$

Intuition

$SSTS01 \leq IHP$

Definition (Simple semi-Thue System, SSTS)

A semi-Thue system over an alphabet Σ is *simple*, if each rule has the form $ab \Rightarrow cd$ for some $a, b, c, d \in \Sigma$.

Lemma (SSTS01)

Given a simple semi-Thue system over Σ , it is undecidable whether $\exists n \in \mathbb{N}.0^n \rightarrow 1^n$

Simultaneous Set of Judgments

Proof search algorithm [Bun08] uses **Simultaneous Set of Judgments**¹

$$\Gamma_1 \vdash ? : \tau_1, \dots, \Gamma_n \vdash ? : \tau_n$$
 where $dom(\Gamma_1) = \dots = dom(\Gamma_n)$

with transformations such as

$$\Gamma_1 \vdash ? : \tau_1, \quad \Gamma_2 \vdash ? : \sigma \cap \tau
\rightsquigarrow \Gamma_1 \vdash ? : \tau_1, \quad \Gamma_2 \vdash ? : \sigma, \quad \Gamma_2 \vdash ? : \tau$$

$$\begin{array}{l} \Gamma_1 \vdash ?: \sigma_1 \rightarrow \tau_1, \quad \Gamma_2 \vdash ?: \sigma_2 \rightarrow \tau_2 \\ \rightsquigarrow \Gamma_1 \cup \{\textbf{\textit{x}}: \sigma_1\} \vdash ?: \tau_1, \quad \Gamma_2 \cup \{\textbf{\textit{x}}: \sigma_2\} \vdash ?: \tau_2 \text{ where } \textbf{\textit{x}} \text{ is fresh} \end{array}$$

$$\begin{array}{ll} \Gamma_1 \vdash ?: \tau_1, & \Gamma_2 \vdash ?: \tau_2 \\ & \text{where } \textbf{\textit{x}}: \sigma_1^1 \rightarrow \sigma_1^2 \rightarrow \tau_1 \in \Gamma_1 \text{ and } \textbf{\textit{x}}: \sigma_2^1 \rightarrow \sigma_2^2 \rightarrow \tau_2 \in \Gamma_2 \\ & \rightsquigarrow \Gamma_1 \vdash ?: \sigma_1^1, & \Gamma_2 \vdash ?: \sigma_2^1 \text{ and } \Gamma_1 \vdash ?: \sigma_1^2, & \Gamma_2 \vdash ?: \sigma_2^2 \end{array}$$

¹logically same as Intersection Synchronous Logic [PRR12] 👨 🔻 😩 🕞

Simple semi-Thue System Simulation

Fix SSTS **S** over Σ with $I, r, \bullet \not\in \Sigma$.

Let
$$\Gamma = \{z : 1\} \cup \{x_{ab \Rightarrow cd} : \sigma_{ab \Rightarrow cd} \mid ab \Rightarrow cd \in S\}$$
 where $\sigma_{ab \Rightarrow cd} = (I \rightarrow c \rightarrow a) \cap (r \rightarrow d \rightarrow b) \cap \bigcap_{e \in \Sigma} (\bullet \rightarrow e \rightarrow e)$

Let							
$\Gamma_1 = \Gamma$	$\Gamma_2 = \Gamma$	$\Gamma_3 = \Gamma$		$\Gamma_{n-2}=\Gamma,$	$\Gamma_{n-1}=\Gamma,$	$\Gamma_n = \Gamma$	
y ₁ : I	<i>y</i> ₁ : <i>r</i>	<i>y</i> ₁ : ●		<i>y</i> ₁ : ●	<i>y</i> ₁ : ●	<i>y</i> ₁ : ●	
<i>y</i> ₂ : ●	y ₂ : I	y ₂ : r		<i>y</i> ₂ : ●	<i>y</i> ₂ : ●	<i>y</i> ₂ : ●	
• • •	•••	• • •				•••	
$y_{n-2}: \bullet$	$y_{n-2}: \bullet$	$y_{n-2}: \bullet$		$y_{n-2}:I$	$y_{n-2}: r$	$y_{n-2}: \bullet$	
$y_{n-1}: \bullet$	$y_{n-1}: \bullet$	$y_{n-1}: \bullet$		$y_{n-1}: \bullet$	$y_{n-1}:I$	$y_{n-1} : r$	

Intuitively: y:I, y:r in neighboring environments; $y:\bullet$ otherwise.

Simple semi-Thue System Simulation

 $tabu \stackrel{ab\Rightarrow cd}{\Rightarrow} tcdu$ for n=4 is simulated by $\Gamma_1 \vdash ?:t, \quad \Gamma_2 \vdash ?:a, \quad \Gamma_3 \vdash ?:b, \quad \Gamma_4 \vdash ?:u$ using $x_{ab\Rightarrow cd}:(I \to c \to a) \cap (r \to d \to b) \cap \bigcap_{e \in \Sigma} (\bullet \to e \to e)$ $\Gamma_1 \vdash ?:t, \quad \Gamma_2 \vdash ?:c, \quad \Gamma_3 \vdash ?:d, \quad \Gamma_4 \vdash ?:u$ and $\Gamma_1 \vdash ?:\bullet, \quad \Gamma_2 \vdash ?:I, \quad \Gamma_3 \vdash ?:r, \quad \Gamma_4 \vdash ?:\bullet$

The second condition is satisfied iff I, r are inhabited in exactly the neighboring contexts.

Intuitively: type environments encode rewrite rule and order information; inhabited atoms encode current string.

Simple semi-Thue System Simulation

$$\Gamma_1 \vdash ?: 1, \dots, \Gamma_n \vdash ?: 1$$
 is satisfied since $z: 1 \in \Gamma_i$ for $1 \le i \le n$

Lemma

We have $0^n \rightarrow 1^n$ iff $\Gamma_1 \vdash ?: 0, \dots, \Gamma_n \vdash ?: 0$ is satisfied.

Next: construct $\Gamma_1 \vdash ?: 0, \dots, \Gamma_n \vdash ?: 0$ for arbitrary/unknown n

 $\sigma_* = ((\bullet \to *) \to *) \cap ((I \to *) \to \#) \cap ((I \to \#) \cap (\bullet \to \$) \to \$)$ $\sigma_0 = ((\bullet \to 0) \to *) \cap ((I \to 0) \to \#) \cap ((r \to 0) \to \$)$ $\tau = \sigma_* \to \sigma_0 \to 1 \to \sigma_{t_1} \to \ldots \to \sigma_{t_k} \to (I \to *) \cap (r \to \#) \cap (\bullet \to \$)$ $(I \rightarrow *) \cap (r \rightarrow \#) \cap (\bullet \rightarrow \$)$ Relative Tags $y_1: I \xrightarrow{y_1} r \xrightarrow{y_1} y_1: \bullet$ / left • r right other Absolute Tags $l \to * \qquad (r \to \#) \cap (\bullet \to \$)$ \$ last V2 : 1 # next to last * other *y*₃ : ● $y_3: I y_3: r$

Back to the Goal

$HTM \leq IHP$

HTM < IHP

Fix a TM $M = (\Sigma, Q, q_0, q_f, \delta)$ where

- \bullet Σ : finite set of tape symbols with ${\scriptscriptstyle \square} \in \Sigma$
- Q: finite set of states with $q_0, q_f \in Q$
- q₀: initial state
- q_f : final state
- $\delta: \mathbf{Q} \times \mathbf{\Sigma} \to \mathbf{Q} \times \mathbf{\Sigma} \times \{+1, -1\}$: transition function

Let $\mathbb{A}=\Sigma\dot{\cup}\{\emph{I},\emph{r},\bullet\}\dot{\cup}\{\langle\emph{q},\emph{a}\rangle\mid\emph{q}\in\emph{Q},\emph{a}\in\Sigma\}\dot{\cup}\{\circ,*,\#,\$\}$ The

configuration $(q, 3, abcd_{--})$ is represented as $ab\langle q, c\rangle d_{--}$

TM simulation

a∈Σ

TM simulation using most n tape cells by

$$\Gamma_1 \vdash ? : \langle q_0, \bot \rangle, \quad \Gamma_2 \vdash ? : \bot, \quad \ldots, \quad \Gamma_n \vdash ? : \bot$$

where

$$egin{aligned} \sigma_f &= igcap_{a \in \Sigma} a \cap igcap_{\langle q_f, a \rangle} \langle q_f, a
angle \ & ext{for } t = ((q, c) \mapsto (q', c', +1)) \in \delta \ \sigma_t &= igcap_{a \in \Sigma} (ullet o a o a) \cap (I o c' o \langle q, c
angle) \cap igcap_{a \in \Sigma} (r o \langle q', a
angle o a) \ & ext{for } t = ((q, c) \mapsto (q', c', -1)) \in \delta \ \sigma_t &= igcap_{ullet} (ullet o a o a) \cap (r o c' o \langle q, c
angle) \cap igcap_{ullet} (I o \langle q', a
angle o a) \end{aligned}$$

$\Gamma_1, \ldots, \Gamma_n$ Initialization

$$egin{aligned} \sigma_* &= ((ullet
ightarrow \circ)
ightarrow \circ) \cap ((ullet
ightarrow *)
ightarrow *) \ \cap ((I
ightarrow *)
ightarrow \#) \cap ((r
ightarrow \#) \cap (ullet
ightarrow \$)
ightarrow \$) \ \sigma_0 &= ((ullet
ightarrow \langle q_0, ullet
angle)
ightarrow \circ) \cap ((ullet
ightarrow ullet
ightarrow)
ightarrow ((r
ightarrow ullet)
ightarrow \$) \ \cap ((I
ightarrow ullet)
ightarrow \#) \cap ((r
ightarrow ullet)
ightarrow \$) \ \tau_* &= \sigma_0
ightarrow \sigma_*
ightarrow \sigma_f
ightarrow \sigma_{t_1}
ightarrow \ldots
ightarrow \sigma_{t_k} \
ightarrow (I
ightarrow \circ) \cap (r
ightarrow \#) \cap (ullet
ightarrow \$) \ \ \text{where } \delta = \{t_1, \ldots, t_k\} \end{aligned}$$

• o marks the first symbol to be initialized to $\langle q_0, ... \rangle$

Lemma

M halts starting with the empty tape iff there exists a λ -term **e** such that $\emptyset \vdash \mathbf{e} : \tau_{\star}$

Insights

- "Neighboring" judgments recognized using y: I and y: r
- TM simulation with fixed number of cells in rank 2 and order 2
- Inhabitant directly encodes computation
- Initialization requires only one $a \cap b \rightarrow c$ type in the environment to increase the number of simultaneous judgments
- τ_{\star} is of rank 3 and order 3
- SSTS01 is convenient

Bibliography I

H.P. Barendregt, W. Dekkers, and R. Statman. *Lambda Calculus with Types*. Perspectives in Logic, Cambridge University Press, 2013.

Martin W. Bunder. "The Inhabitation Problem for Intersection Types." In: Theory of Computing 2008. Proc. Fourteenth Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, NSW, Australia, January 22-25, 2008. Proceedings. Ed. by James Harland and Prabhu Manyem. Vol. 77. CRPIT. Australian Computer Society, 2008, pp. 7–14. ISBN: 978-1-920682-58-3. URL: http://crpit.com/abstracts/CRPITV77Bunder.html.

D. Leivant. "Polymorphic Type Inference." In: *Proc. 10th ACM Symp. on Principles of Programming Languages.* ACM. 1983, pp. 88–98.

Bibliography II

Ralph Loader. "The undecidability of λ -definability." In: Logic, Meaning and Computation. Springer, 2001, pp. 331–342.

G. Pottinger. "A Type Assignment for the Strongly Normalizable Lambda-Terms." In: *To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.* Ed. by J. Hindley and J. Seldin. Academic Press, 1980, pp. 561–577.

Elaine Pimentel, Simona Ronchi Della Rocca, and Luca Roversi. "Intersection Types from a Proof-theoretic Perspective." In: *Fundam. Inform.* 121.1-4 (2012), pp. 253–274. DOI: 10.3233/FI-2012-778. URL: http://dx.doi.org/10.3233/FI-2012-778.

S. Salvati et al. "Urzyczyn and Loader are logically related." In: *Proceedings of ICALP 2012*. Vol. 7392. LNCS. Springer, 2012, pp. 364–376.

Bibliography III

P. Urzyczyn. "Inhabitation of Low-Rank Intersection Types." In: *Proceedings of TLCA'09*. Vol. 5608. LNCS. Springer, 2009, pp. 356–370.

P. Urzyczyn. "The Emptiness Problem for Intersection Types." In: *Journal of Symbolic Logic* 64.3 (1999), pp. 1195–1215.