
FLABloM: Functional linear algebra with block
matrices

Adam Sandberg Eriksson Patrik Jansson

Chalmers University of Technology, Sweden
{saadam,patrikj}@chalmers.se

May 26, 2016



Functional linear algebra with block matrices

I Inspired by work on parallel parsing by Bernardy & Jansson

I Matrices in Agda

I Reflexive, transitive closure of matrices


1

[
0 1

]
[

0
0

] [
1 1
0 1

]




Matrices

Desirable:

I Easy to program with

I Easy to write proofs with

Possibilities:

I Vectors of vectors: Vec (Vec a n) m

I Functions from indices: Fin m→ Fin n→ a

I . . .



Matrices

Desirable:

I Easy to program with

I Easy to write proofs with

Possibilities:

I Vectors of vectors: Vec (Vec a n) m

I Functions from indices: Fin m→ Fin n→ a

I . . .



Matrices: shapes

A type for shapes:

data Shape : Set where
L : Shape
B : (s1 s2 : Shape)→ Shape

Shapes for one dimension: (a vector/row matrix)

B

B

L

1

L

3

L

16



Matrices: shapes

A type for shapes:

data Shape : Set where
L : Shape
B : (s1 s2 : Shape)→ Shape

Shapes for one dimension: (a vector/row matrix)

B

B

L

1

L

3

L

16



Matrices: building blocks

Matrices are indexed by two shapes:

data M (a : Set) : (rows cols : Shape)→ Set

[a] ,
[
[· · · ] [· · · ]

]
,



[
...

]
[
...

]
 ,



[
. . .

] [
. . .

]
[
. . .

] [
. . .

]


M a L L M a L (B c1 c2 ) M a (B r1 r2 ) L M a (B r1 r2 ) (B c1 c2 )



Matrices: building blocks

Matrices are indexed by two shapes:

data M (a : Set) : (rows cols : Shape)→ Set

[a] ,
[
[· · · ] [· · · ]

]
,



[
...

]
[
...

]
 ,



[
. . .

] [
. . .

]
[
. . .

] [
. . .

]


M a L L M a L (B c1 c2 ) M a (B r1 r2 ) L M a (B r1 r2 ) (B c1 c2 )



Matrices: a datatype

data M (a : Set) : (rows cols : Shape)→ Set where
One : a→ M a L L

Col : {r1 r2 : Shape } →
M a r1 L→ M a r2 L→ M a (B r1 r2 ) L

Row : {c1 c2 : Shape } →
M a L c1 → M a L c2 → M a L (B c1 c2 )

Q : {r1 r2 c1 c2 : Shape } →
M a r1 c1 → M a r1 c2 →
M a r2 c1 → M a r2 c2 →
M a (B r1 r2 ) (B c1 c2 )



Rings

A hierarchy of rings as Agda records:

I SemiNearRing
', +, ·, 0 (+ is associative and commutes, 0 identity of
+ and zero of ·, · distributes over +)

I SemiRing
1 (1 identity of ·, · is associative)

I ClosedSemiRing
an operation ∗ with w∗ ' 1 + w · w∗.



Lifting matrices

We take a semi-(near)-ring and lift it to square matrices.
A lifting function Square for each Shape and ring structure.

Square : Shape → SemiNearRing → SemiNearRing
Square ′ : Shape → SemiRing → SemiRing
Square ′′ : Shape → ClosedSemiRing → ClosedSemiRing



Lifting matrices

(Parts of) lifted equivalence:

'S : ∀ {r c } → M s r c → M s r c → Set
(One x) 'S (One x1 ) = x 's x1
(Row m m1 ) 'S (Row n n1 ) = (m 'S n) × (m1 'S n1 )

(Parts of) lifted multiplication:

·S : ∀ {r m c } → M s r m→ M s m c → M s r c
One x ·S One y = One (x ·s y)
Row m0 m1 ·S Col n0 n1 = m0 ·S n0 +S m1 ·S n1



Proofs: reflexivity

reflS : ∀ {r c } → (X : M s r c)→ X 'S X
reflS (One x) = refl s {x }
reflS (Row X X1 ) = reflS X , reflS X1

reflS (Col X X1 ) = reflS X , reflS X1

reflS (Q X X1 X2 X3 ) = reflS X , reflS X1 ,
reflS X2 , reflS X3



Closure for matrices

Computing the reflexive, transitive closure:

[a]∗ = [a∗] A11 A12

A21 A22

∗

=

 A∗
11 + A∗

11 · A12 ·∆∗ · A21 · A∗
11 A∗

11 · A12 ·∆∗

∆∗ · A21 · A∗
11 ∆∗


(with ∆ = A22 + A21 · A∗11 · A12)

with proof that it satisfies w∗ ' 1 + w · w∗



Reachability example

1 2

3 4


[

0 0
0 0

] [
0 0
0 1

]
[

0 1
0 0

] [
0 0
0 0

]

∗

=


[

1 0
0 1

] [
0 0
0 1

]
[

0 1
0 0

] [
1 1
0 1

]


1 2

3 4



Reachability example

1 2

3 4


[

0 0
0 0

] [
0 0
0 1

]
[

0 1
0 0

] [
0 0
0 0

]

∗

=


[

1 0
0 1

] [
0 0
0 1

]
[

0 1
0 0

] [
1 1
0 1

]


1 2

3 4



Wrapping up

Conclusions, further work, et.c.

I This matrix definition is useable...

I A more flexible matrix definition: sparse? fewer constructors?

I Automation (of proofs)!

I Generalisation to closed semi-near-ring for parsing
applications.

I Agda development available at
https://github.com/DSLsofMath/FLABloM.

https://github.com/DSLsofMath/FLABloM

