
On Unification of Lambda Terms

Andrew Polonsky
jww Giulio Manzonetto

Types 2016, Novi Sad
May 28, 2016



Ω

Bruce Lercher (NDJFL 17-2, 1976) noticed that the term

Ω = (λx .xx)(λx .xx)

is the only “pure cycle” in the lambda calculus: a term which
reduces to itself in one step of beta reduction.

(λv .X (v))Y = X (Y )



Ω

Bruce Lercher (NDJFL 17-2, 1976) noticed that the term

Ω = (λx .xx)(λx .xx)

is the only “pure cycle” in the lambda calculus: a term which
reduces to itself in one step of beta reduction.

(λv .X (v))Y = X (Y )



Ω

(λv .X (v))Y = X (Y ) (1)

▸ Since X (Y ) is an application, either X (v) = v , or
X (v) is an application.

▸ Suppose X (v) = v . Then (λv .v)Y = Y , contradiction.

▸ So X (v) = X1(v)X2(v). Substituting into (1), we obtain

(λv .X1(v)X2(v))Y = X1(Y )X2(Y )

(λv .X1(v)X2(v)) = X1(Y )

Y = X2(Y )



Ω

(λv .X (v))Y = X (Y ) (1)

▸ Since X (Y ) is an application, either X (v) = v , or
X (v) is an application.

▸ Suppose X (v) = v . Then (λv .v)Y = Y , contradiction.

▸ So X (v) = X1(v)X2(v). Substituting into (1), we obtain

(λv .X1(v)X2(v))Y = X1(Y )X2(Y )

(λv .X1(v)X2(v)) = X1(Y )

Y = X2(Y )



Ω

(λv .X (v))Y = X (Y ) (1)

▸ Since X (Y ) is an application, either X (v) = v , or
X (v) is an application.

▸ Suppose X (v) = v . Then (λv .v)Y = Y , contradiction.

▸ So X (v) = X1(v)X2(v). Substituting into (1), we obtain

(λv .X1(v)X2(v))Y = X1(Y )X2(Y )

(λv .X1(v)X2(v)) = X1(Y )

Y = X2(Y )



Ω

(λv .X (v))Y = X (Y ) (1)

▸ Since X (Y ) is an application, either X (v) = v , or
X (v) is an application.

▸ Suppose X (v) = v . Then (λv .v)Y = Y , contradiction.

▸ So X (v) = X1(v)X2(v). Substituting into (1), we obtain

(λv .X1(v)X2(v))Y = X1(Y )X2(Y )

(λv .X1(v)X2(v)) = X1(Y )

Y = X2(Y )



Ω

(λv .X (v))Y = X (Y ) (1)

▸ Since X (Y ) is an application, either X (v) = v , or
X (v) is an application.

▸ Suppose X (v) = v . Then (λv .v)Y = Y , contradiction.

▸ So X (v) = X1(v)X2(v). Substituting into (1), we obtain

(λv .X1(v)X2(v))Y = X1(Y )X2(Y )

(λv .X1(v)X2(v)) = X1(Y )

Y = X2(Y )



Ω

(λv .X1(v)X2(v)) = X1(Y ) (2)

Y = X2(Y ) (3)

▸ Regarding (3), either X2(v) = v , or v ∉ X2(v) = Y .
(Otherwise, Y = X2(Y ) = X2(X2(Y )) = ⋅ ⋅ ⋅ would be infinite.)

▸ The same is true of X1: If X1(y) = λv .X1(v)X
′

2(y , v), then
certainly X1 is infinite. Otherwise, y occurs at some position
00⋆p, v occurs at position 0000⋆p, etc.

▸ The only possibility remaining is X1(v) = v . Then (2) becomes

(λv .vX2(v)) = Y (4)

▸ X2(v) = v yields the solution Y = λv .vv , X (Y ) = Ω.

▸ If X2(v) = Y , then (4) yields Y = λv .vY , contradiction.



Ω

(λv .X1(v)X2(v)) = X1(Y ) (2)

Y = X2(Y ) (3)

▸ Regarding (3), either X2(v) = v , or v ∉ X2(v) = Y .
(Otherwise, Y = X2(Y ) = X2(X2(Y )) = ⋅ ⋅ ⋅ would be infinite.)

▸ The same is true of X1: If X1(y) = λv .X1(v)X
′

2(y , v), then
certainly X1 is infinite. Otherwise, y occurs at some position
00⋆p, v occurs at position 0000⋆p, etc.

▸ The only possibility remaining is X1(v) = v . Then (2) becomes

(λv .vX2(v)) = Y (4)

▸ X2(v) = v yields the solution Y = λv .vv , X (Y ) = Ω.

▸ If X2(v) = Y , then (4) yields Y = λv .vY , contradiction.



Ω

(λv .X1(v)X2(v)) = X1(Y ) (2)

Y = X2(Y ) (3)

▸ Regarding (3), either X2(v) = v , or v ∉ X2(v) = Y .
(Otherwise, Y = X2(Y ) = X2(X2(Y )) = ⋅ ⋅ ⋅ would be infinite.)

▸ The same is true of X1: If X1(y) = λv .X1(v)X
′

2(y , v), then
certainly X1 is infinite. Otherwise, y occurs at some position
00⋆p, v occurs at position 0000⋆p, etc.

▸ The only possibility remaining is X1(v) = v . Then (2) becomes

(λv .vX2(v)) = Y (4)

▸ X2(v) = v yields the solution Y = λv .vv , X (Y ) = Ω.

▸ If X2(v) = Y , then (4) yields Y = λv .vY , contradiction.



Ω

(λv .X1(v)X2(v)) = X1(Y ) (2)

Y = X2(Y ) (3)

▸ Regarding (3), either X2(v) = v , or v ∉ X2(v) = Y .
(Otherwise, Y = X2(Y ) = X2(X2(Y )) = ⋅ ⋅ ⋅ would be infinite.)

▸ The same is true of X1: If X1(y) = λv .X1(v)X
′

2(y , v), then
certainly X1 is infinite. Otherwise, y occurs at some position
00⋆p, v occurs at position 0000⋆p, etc.

▸ The only possibility remaining is X1(v) = v . Then (2) becomes

(λv .vX2(v)) = Y (4)

▸ X2(v) = v yields the solution Y = λv .vv , X (Y ) = Ω.

▸ If X2(v) = Y , then (4) yields Y = λv .vY , contradiction.



Ω

(λv .X1(v)X2(v)) = X1(Y ) (2)

Y = X2(Y ) (3)

▸ Regarding (3), either X2(v) = v , or v ∉ X2(v) = Y .
(Otherwise, Y = X2(Y ) = X2(X2(Y )) = ⋅ ⋅ ⋅ would be infinite.)

▸ The same is true of X1: If X1(y) = λv .X1(v)X
′

2(y , v), then
certainly X1 is infinite. Otherwise, y occurs at some position
00⋆p, v occurs at position 0000⋆p, etc.

▸ The only possibility remaining is X1(v) = v . Then (2) becomes

(λv .vX2(v)) = Y (4)

▸ X2(v) = v yields the solution Y = λv .vv , X (Y ) = Ω.

▸ If X2(v) = Y , then (4) yields Y = λv .vY , contradiction.



Ω

(λv .X1(v)X2(v)) = X1(Y ) (2)

Y = X2(Y ) (3)

▸ Regarding (3), either X2(v) = v , or v ∉ X2(v) = Y .
(Otherwise, Y = X2(Y ) = X2(X2(Y )) = ⋅ ⋅ ⋅ would be infinite.)

▸ The same is true of X1: If X1(y) = λv .X1(v)X
′

2(y , v), then
certainly X1 is infinite. Otherwise, y occurs at some position
00⋆p, v occurs at position 0000⋆p, etc.

▸ The only possibility remaining is X1(v) = v . Then (2) becomes

(λv .vX2(v)) = Y (4)

▸ X2(v) = v yields the solution Y = λv .vv , X (Y ) = Ω.

▸ If X2(v) = Y , then (4) yields Y = λv .vY , contradiction.



M → N →M

That was easy!

What about “bi-cycles”?
Theorem. (Endrullis, Klop, AP; A. Visser Festschrift, to appear)
The pure bicycles in the lambda calculus are of the form

▸ AAA, where A = λxy .yxx ;

▸ AAA, where A = λxy .yyx ;

▸ ABA, where A = λxy .yxy , B any normal form;

▸ AB[A/y]A, where A = λxy .yBy , B a normal form, x does not
occur, and y does not occur actively, in B.



M → N →M

That was easy!
What about “bi-cycles”?

Theorem. (Endrullis, Klop, AP; A. Visser Festschrift, to appear)
The pure bicycles in the lambda calculus are of the form

▸ AAA, where A = λxy .yxx ;

▸ AAA, where A = λxy .yyx ;

▸ ABA, where A = λxy .yxy , B any normal form;

▸ AB[A/y]A, where A = λxy .yBy , B a normal form, x does not
occur, and y does not occur actively, in B.



M → N →M

That was easy!
What about “bi-cycles”?
Theorem. (Endrullis, Klop, AP; A. Visser Festschrift, to appear)
The pure bicycles in the lambda calculus are of the form

▸ AAA, where A = λxy .yxx ;

▸ AAA, where A = λxy .yyx ;

▸ ABA, where A = λxy .yxy , B any normal form;

▸ AB[A/y]A, where A = λxy .yBy , B a normal form, x does not
occur, and y does not occur actively, in B.



Λ[M ]
▸ Let M = {Xi(x1, . . . , xni ) ∣ i ∈ N} be a set of metavariables

with parameters.

Put

Λ[M ] ∶∶= x ∣ tt ∣ λx .t ∣ X (t, . . . , t) X ∈ M

▸ The usual notion of substitution is extended to Λ[M ] by

X (s1, . . . , sn)[t⃗/y⃗] = X (s1[t⃗/y⃗], . . . , sn[t⃗/y⃗])

▸ Given X (x1, . . . , xnX ) ∈ M , t ∈ Λ[M ](x1, . . . , xnX ), define

x[X (x⃗) ∶= t] = x

s1s2[X (x⃗) ∶= t] = s1[X (x⃗) ∶= t]s2[X (x⃗) ∶= t]

(λy .s)[X (x⃗) ∶= t] = λz .s[y/z][X (x⃗) ∶= t], z#t, s

X (s1, . . . , sn)[X (x⃗) ∶= t] = t[s⃗[X (x⃗) ∶= t]/x⃗]



Λ[M ]
▸ Let M = {Xi(x1, . . . , xni ) ∣ i ∈ N} be a set of metavariables

with parameters. Put

Λ[M ] ∶∶= x ∣ tt ∣ λx .t ∣ X (t, . . . , t) X ∈ M

▸ The usual notion of substitution is extended to Λ[M ] by

X (s1, . . . , sn)[t⃗/y⃗] = X (s1[t⃗/y⃗], . . . , sn[t⃗/y⃗])

▸ Given X (x1, . . . , xnX ) ∈ M , t ∈ Λ[M ](x1, . . . , xnX ), define

x[X (x⃗) ∶= t] = x

s1s2[X (x⃗) ∶= t] = s1[X (x⃗) ∶= t]s2[X (x⃗) ∶= t]

(λy .s)[X (x⃗) ∶= t] = λz .s[y/z][X (x⃗) ∶= t], z#t, s

X (s1, . . . , sn)[X (x⃗) ∶= t] = t[s⃗[X (x⃗) ∶= t]/x⃗]



Λ[M ]
▸ Let M = {Xi(x1, . . . , xni ) ∣ i ∈ N} be a set of metavariables

with parameters. Put

Λ[M ] ∶∶= x ∣ tt ∣ λx .t ∣ X (t, . . . , t) X ∈ M

▸ The usual notion of substitution is extended to Λ[M ] by

X (s1, . . . , sn)[t⃗/y⃗] = X (s1[t⃗/y⃗], . . . , sn[t⃗/y⃗])

▸ Given X (x1, . . . , xnX ) ∈ M , t ∈ Λ[M ](x1, . . . , xnX ), define

x[X (x⃗) ∶= t] = x

s1s2[X (x⃗) ∶= t] = s1[X (x⃗) ∶= t]s2[X (x⃗) ∶= t]

(λy .s)[X (x⃗) ∶= t] = λz .s[y/z][X (x⃗) ∶= t], z#t, s

X (s1, . . . , sn)[X (x⃗) ∶= t] = t[s⃗[X (x⃗) ∶= t]/x⃗]



Λ[M ]
▸ Let M = {Xi(x1, . . . , xni ) ∣ i ∈ N} be a set of metavariables

with parameters. Put

Λ[M ] ∶∶= x ∣ tt ∣ λx .t ∣ X (t, . . . , t) X ∈ M

▸ The usual notion of substitution is extended to Λ[M ] by

X (s1, . . . , sn)[t⃗/y⃗] = X (s1[t⃗/y⃗], . . . , sn[t⃗/y⃗])

▸ Given X (x1, . . . , xnX ) ∈ M , t ∈ Λ[M ](x1, . . . , xnX ), define

x[X (x⃗) ∶= t] = x

s1s2[X (x⃗) ∶= t] = s1[X (x⃗) ∶= t]s2[X (x⃗) ∶= t]

(λy .s)[X (x⃗) ∶= t] = λz .s[y/z][X (x⃗) ∶= t], z#t, s

X (s1, . . . , sn)[X (x⃗) ∶= t] = t[s⃗[X (x⃗) ∶= t]/x⃗]



Λ[M ]

▸ A unification problem is a finite set of equations between
elements of Λ[M ].

▸ A solution to a unification problem P is an assignment

Xi(x1, . . . , xni ) z→Mi(x1, . . . , xni )

of metavariables occurring in P to pure lambda terms, so that

s = t ∈ E Ô⇒ s[X⃗ ∶= M⃗] = t[X⃗ ∶= M⃗]

▸ Claim. It is decidable whether a given unification problem
has a solution.



Λ[M ]

▸ A unification problem is a finite set of equations between
elements of Λ[M ].

▸ A solution to a unification problem P is an assignment

Xi(x1, . . . , xni ) z→Mi(x1, . . . , xni )

of metavariables occurring in P to pure lambda terms, so that

s = t ∈ E Ô⇒ s[X⃗ ∶= M⃗] = t[X⃗ ∶= M⃗]

▸ Claim. It is decidable whether a given unification problem
has a solution.



Notation

We denote by P ∣ X (x⃗) ∶= t the result of applying metavariable
substitution [X (x⃗) ∶= t] to both sides of every equation in P:

∅ ∣ X (x⃗) ∶= t ∶= ∅

P; s = s ′ ∣ X (x⃗) ∶= t ∶= P ∣ X (x⃗) ∶= t; s[X (x⃗) ∶= t] = s ′[X (x⃗) ∶= t]



Martelli–Montanari for Λ[M ]

E ;X (s⃗) = y z→

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

E ; s1 = y ∣ X (x⃗) ∶= x1

⋮

E ; sk = y ∣ X (x⃗) ∶= xk



Martelli–Montanari for Λ[M ]

E ;X (s⃗) = t1t2 z→

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E ; s1 = t1t2 ∣ X (x⃗) ∶= x1

⋮

E ; sk = t1t2 ∣ X (x⃗) ∶= xk

E ;X1(s⃗) = t1;X2(s⃗) = t2 ∣ X (x⃗) ∶= X1(x⃗)X2(x⃗)



Martelli–Montanari for Λ[M ]

E ;X (s⃗) = λy .t z→

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E ; s1 = λy .t ∣ X (x⃗) ∶= x1

⋮

E ; sk = λy .t ∣ X (x⃗) ∶= xk

E ;X0(z , s⃗) = t[z/y] ∣ X (x⃗) ∶= λz .X0(z , x⃗)

where z#E , s⃗, t;



Martelli–Montanari for Λ[M ]

E ;X (s⃗) = Y (t⃗) z→

⎧⎪⎪
⎨
⎪⎪⎩

X (s⃗) = Y (t⃗);E ∃(s = t) ∈ E ,{s, t} ⊄M
⊺ otherwise

where M = {X (t⃗) ∣ X ∈ M , t⃗ ∈ Λ[M ]}.

IOW: If every equation in the unification problem is an equation
between metavariables, then a solution can be obtained by setting
all the metavariables simultaneously to ANY λ-term.
Otherwise, equations of the form X (s⃗) = Y (t⃗) are moved to the
back of the equation queue.



Martelli–Montanari for Λ[M ]

E ;X (s⃗) = Y (t⃗) z→

⎧⎪⎪
⎨
⎪⎪⎩

X (s⃗) = Y (t⃗);E ∃(s = t) ∈ E ,{s, t} ⊄M
⊺ otherwise

where M = {X (t⃗) ∣ X ∈ M , t⃗ ∈ Λ[M ]}.
IOW: If every equation in the unification problem is an equation
between metavariables, then a solution can be obtained by setting
all the metavariables simultaneously to ANY λ-term.
Otherwise, equations of the form X (s⃗) = Y (t⃗) are moved to the
back of the equation queue.



Martelli–Montanari for Λ[M ]

E ; t = X (s⃗) z→ E ;X (s⃗) = t



Martelli–Montanari for Λ[M ]

E ; x = x z→ E

E ; st = s ′t ′ z→ E ; s = s ′; t = t ′

E ;λx .s = λy .t z→ E ; s[z/x] = t[z/y], z#E , s, t



Martelli–Montanari for Λ[M ]

E ; z→ �

∅ z→ ⊺



Cycles again

Problem: What to do with the occurs-check?

(λv .X1(v)X2(v)) = X1(Y )

Answer: Occurrences block decomposition, forcing a variable to
be chosen. Concretely,

▸ Every recursive occurrence of a metavariable is marked by a
special term constructor, which remembers the metavariable;

▸ When the metavariable is substituted, the marker is updated;
When the metavariable aligns with the marker, only the trivial
instances may be chosen;

▸ The markers are calculated and propagated through
parameters to metavariables.



Cycles again

Problem: What to do with the occurs-check?

(λv .X1(v ,Y )X2(v)) = X1(Y ,Z)

Answer: Occurrences block decomposition, forcing a variable to
be chosen. Concretely,

▸ Every recursive occurrence of a metavariable is marked by a
special term constructor, which remembers the metavariable;

▸ When the metavariable is substituted, the marker is updated;
When the metavariable aligns with the marker, only the trivial
instances may be chosen;

▸ The markers are calculated and propagated through
parameters to metavariables.



Cycles again

Problem: What to do with the occurs-check?

(λv .X1(v ,Y )X2(v)) = X1(Y ,Z)

Answer: Occurrences block decomposition, forcing a variable to
be chosen.

Concretely,

▸ Every recursive occurrence of a metavariable is marked by a
special term constructor, which remembers the metavariable;

▸ When the metavariable is substituted, the marker is updated;
When the metavariable aligns with the marker, only the trivial
instances may be chosen;

▸ The markers are calculated and propagated through
parameters to metavariables.



Cycles again

Problem: What to do with the occurs-check?

(λv .X1(v ,Y )X2(v)) = X1(Y ,Z)

Answer: Occurrences block decomposition, forcing a variable to
be chosen. Concretely,

▸ Every recursive occurrence of a metavariable is marked by a
special term constructor, which remembers the metavariable;

▸ When the metavariable is substituted, the marker is updated;
When the metavariable aligns with the marker, only the trivial
instances may be chosen;

▸ The markers are calculated and propagated through
parameters to metavariables.



Cycles again

Problem: What to do with the occurs-check?

(λv .X1(v ,Y )X2(v)) = X1(Y ,Z)

Answer: Occurrences block decomposition, forcing a variable to
be chosen. Concretely,

▸ Every recursive occurrence of a metavariable is marked by a
special term constructor, which remembers the metavariable;

▸ When the metavariable is substituted, the marker is updated;
When the metavariable aligns with the marker, only the trivial
instances may be chosen;

▸ The markers are calculated and propagated through
parameters to metavariables.



Cycles again

Problem: What to do with the occurs-check?

(λv .X1(v ,Y )X2(v)) = X1(Y ,Z)

Answer: Occurrences block decomposition, forcing a variable to
be chosen. Concretely,

▸ Every recursive occurrence of a metavariable is marked by a
special term constructor, which remembers the metavariable;

▸ When the metavariable is substituted, the marker is updated;
When the metavariable aligns with the marker, only the trivial
instances may be chosen;

▸ The markers are calculated and propagated through
parameters to metavariables.



Termination

Let P be a unification problem.
For every metavariable X (x⃗) ∈ P, the application of decomposition
rules to X and all the fresh metavariables generated by it must
eventually terminate — either in the variables, the guards, or other
metavariables.
The unification problem that results may be much larger than the
original one — but it will have one fewer distinct metavariables.
After finitely many (pure) simplifications, some metavariable will
become subject to the decomposition rules. At this point, there are
again finitely many steps until it will be forced to a variable.



Related work

▸ Higher-order unification concerns unification of simply-typed
lambda terms up to beta-eta equality.

▸ From the perspective of second-order equational logic, it is
thus really a form of E-unification.

▸ Context unification is a fragment of higher-order unification
where the meta-variables are allowed unique occurrence of
their argument.

▸ Nominal unification concerns the nominal presentation of
higher-order signatures.



Unification in second-order equational
logic is decidable!


