
Answer Set Programming
in Intuitionistic Logic

Aleksy Schubert and Paweł Urzyczyn
Uniwersytet Warszawski

TYPES 2016, Novi Sad



Logic Programming

This program:

p :− .
q :− p, r .
s :− p.

has the unique model:

{p, s}

(or implicitly {p, s,¬q,¬r})

◦



What is Answer Set Programming?

It is a PR-oriented renaming of

stable model semantics,

an approach to deal with negation in logic programs.

Like this one:

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

◦



What is a model of this program?

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

First try: {p, r} (i.e., implicitly {p, r ,¬q,¬s}).

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

This will not work. It proves q, and it should not!
This model is unstable, because it is unsound .

◦



What is a model of this program?

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

Second try: {p, s} (i.e., implicitly {p, s,¬q,¬r}).

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

It proves nothing, and we want to derive p and s.
This model is unstable, because it is insufficient.

◦



What is a model of this program?

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

That will work: {p, q, r} (i.e., implicitly {p, q, r ,¬s}).

s :− ¬p, q.
r :− ¬s, q.
p :− r .
q :− ¬s.

This is a stable model or answer set for the program.
It proves exactly p, q, and r .

◦



Things are not so easy in general

Some programs have no stable model at all,
for example this one:

p :− ¬p.

Some programs have more than one stable model,
for example this one:

p :− ¬q.
q :− ¬p.

has two stable models, namely {p,¬q} and {q,¬p}.

The existence of a stable model is an NP-complete problem.

◦



Existence and Entailment

Write P |=SMS X , when every stable model of P satisfies X .

A program P has no stable model
if and only if P |=SMS X ,
for some X that does not occur in P.

The stable entailment is therefore co-NP-complete.

◦



Interpretation in
Intuitionistic Propositional Calculus (IPC)

Given a program P and an atom X
we define a formula ϕ so that:

P |=SMS X if and only if `int ϕ.

◦



What does P |=SMS X mean?

It means that, for every stable model M of P,

(1) Either X holds in M , or

(2) The model M is unstable, because:

(2a) It is unsound (some Y 6∈ M has a proof), or

(2b) It is insufficient (some Y ∈ M has no proof).

◦



Our formula

The formula ϕ is of shape

ψ1 → · · · → ψd → 0

so proving it amounts to proving the judgment

ψ1, . . . , ψd ` 0.

We select the assumptions ψ1, . . . , ψd so that any proof of 0
must force either (1) or (2a) or (2b) in every model.

◦



Taking every model into account

The initial proof goal is 0. Let X1, . . . ,Xn be all propositional
atoms in P , including X . The first n assumptions are:

ψ1 = (X1 → 1)→ (X 1 → 1)→ 0,
. . .

ψn = (Xn → n)→ (X n → n)→ n − 1.

In order to prove 0 we must prove the goal n
under all possible choices of Xi vs X i .

Every such choice represents a different model.

◦



If X simply holds in a model. . .

. . . then we use an assumption formula X → n
and the proof is completed.

◦



Otherwise the model is unstable. . .

. . . and we must prove it.

We include all clauses of P as assumptions,
but we rename all ¬Xj as X j , and all Xj as Xj !

◦



The easy case. . .

. . . occurs when the model is unsound.
It proves some Xi , but we have chosen X i .

This case is handled by assumption formulas of the form

X i → Xi !→ n

so that the goal n can be proved if we have some Xi

and we can derive Xi ! from the (renamed) program P .

◦



The other case occurs. . .

. . . when the model is unstable because it is insufficient.
It cannot prove some Xi which occurs in the present choice.
For this we have assumption formulas of the form

Xi → Xi?→ n

Here, Xi? means „Xi is not derivable in the model”.

◦



An insufficient example1

The model {p, q,¬r ,¬s} is insufficient for the program:

p :− ¬r ,q. q :− ¬s,p. p :− ¬r ,s.

We will prove p? using these assumptions:

(p?→ K1)→ (p?→ K3)→ p?
(q?→ K2)→ q? r? s?

q?→ K1, p?→ K2, r?→ K3,
r → K1, s → K2, s?→ K3

To prove p? one must derive both K1 and K3 from the
additional assumption p?. The latter cannot be easier.

To derive K1 we may try proving q?
That is, proving K2 with the added assumption q?
We obtain K2 from p? This represents a loop in a proof.

◦
1:)



Summing up. . .

We know how to represent ASP in IPC.

We are sure that the target fragment of IPC is
co-NP-complete.

So: we can program ASP in IPC.

◦


