Answer Set Programming in Intuitionistic Logic

Aleksy Schubert and Paweł Urzyczyn Uniwersytet Warszawski

TYPES 2016, Novi Sad

Logic Programming

This program:

p := .q := p, r.s := p.

has the unique model:

 $\{p, s\}$ (or implicitly $\{p, s, \neg q, \neg r\}$)

What is Answer Set Programming?

It is a PR-oriented renaming of

stable model semantics,

an approach to deal with negation in logic programs.

Like this one:

 $s := \neg p, q.$ $r := \neg s, q.$ p := r. $q := \neg s.$

What is a model of this program?

 $s := \neg p, q.$ $r := \neg s, q$. p := r. $q: \neg s$. First try: $\{p, r\}$ (i.e., implicitly $\{p, r, \neg q, \neg s\}$). $s := \neg p, q.$ $r := \neg s, q$. p :- r. $q := \neg s$.

This will not work. It proves *q*, and it should not! This model is *unstable*, because it is *unsound*. What is a model of this program?

 $s := \neg p, q.$ $r := \neg s, q.$ p := r. $q := \neg s.$

```
Second try: \{p, s\} (i.e., implicitly \{p, s, \neg q, \neg r\}).
```

 $s := \neg p, q.$ $r := \neg s, q.$ p := r. $q := \neg s.$

It proves nothing, and we want to derive p and s. This model is unstable, because it is *insufficient*. What is a model of this program?

 $s := \neg p, q.$ $r := \neg s, q.$ p := r. $q := \neg s.$

That will work: $\{p, q, r\}$ (i.e., implicitly $\{p, q, r, \neg s\}$).

 $s := \neg p, q.$ $r := \neg s, q.$ p := r. $q := \neg s.$

This is a *stable model* or *answer set* for the program. It proves exactly p, q, and r.

Things are not so easy in general

Some programs have no stable model at all, for example this one:

 $p:-\neg p$.

Some programs have more than one stable model, for example this one:

 $p:-\neg q.$

$$q: - \neg p$$
.

has two stable models, namely $\{p, \neg q\}$ and $\{q, \neg p\}$.

The existence of a stable model is an NP-complete problem.

Write $P \models_{SMS} X$, when every stable model of P satisfies X.

0

A program P has no stable model if and only if $P \models_{SMS} X$, for some X that does not occur in P.

The stable entailment is therefore co-NP-complete.

Interpretation in Intuitionistic Propositional Calculus (IPC)

0

Given a program P and an atom Xwe define a formula φ so that:

 $P \models_{SMS} X$ if and only if $\vdash_{int} \varphi$.

What does $P \models_{SMS} X$ mean?

- It means that, for every stable model M of P,
- (1) Either X holds in M, or
- (2) The model *M* is unstable, because:
 - (2a) It is unsound (some $Y \not\in M$ has a proof), or
 - (2b) It is insufficient (some $Y \in M$ has no proof).

Our formula

The formula φ is of shape $\psi_1 \rightarrow \cdots \rightarrow \psi_d \rightarrow 0$ so proving it amounts to proving the judgment

 $\psi_1,\ldots,\psi_d \vdash 0.$

We select the assumptions ψ_1, \ldots, ψ_d so that any proof of 0 must force either (1) or (2a) or (2b) in every model.

The initial proof goal is 0. Let X_1, \ldots, X_n be all propositional atoms in P, including X. The first n assumptions are:

 $\psi_1 = (X_1
ightarrow 1)
ightarrow (\overline{X}_1
ightarrow 1)
ightarrow 0$,

$$\psi_n = (X_n \to n) \to (\overline{X}_n \to n) \to n-1.$$

In order to prove 0 we must prove the goal *n* under all possible choices of X_i vs \overline{X}_i .

. . .

Every such choice represents a different model.

If X simply holds in a model...

... then we use an assumption formula $X \rightarrow n$ and the proof is completed.

Otherwise the model is unstable...

... and we must prove it.

We include all clauses of *P* as assumptions, but we rename all $\neg X_j$ as \overline{X}_j , and all X_j as X_j !

... occurs when the model is unsound. It proves some X_i , but we have chosen \overline{X}_i .

This case is handled by assumption formulas of the form $\overline{X}_i \to X_i ! \to n$

so that the goal *n* can be proved if we have some X_i and we can derive X_i ! from the (renamed) program *P*.

... when the model is unstable because it is insufficient. It cannot prove some X_i which occurs in the present choice. For this we have assumption formulas of the form

 $X_i \rightarrow X_i? \rightarrow n$

Here, X_i ? means ,, X_i is not derivable in the model".

An insufficient example¹

The model $\{p, q, \neg r, \neg s\}$ is insufficient for the program:

 $p:-\neg r,q.$ $q:-\neg s,p.$ $p:-\neg r,s.$

We will prove p? using these assumptions:

 $(p?
ightarrow K_1)
ightarrow (p?
ightarrow K_3)
ightarrow p? \ (q?
ightarrow K_2)
ightarrow q? \qquad r? \qquad s?$

 $q? \rightarrow K_1, \qquad p? \rightarrow K_2, \qquad r? \rightarrow K_3, \\ r \rightarrow K_1, \qquad s \rightarrow K_2, \qquad s? \rightarrow K_3$

To prove p? one must derive both K_1 and K_3 from the additional assumption p?. The latter cannot be easier.

To derive K_1 we may try proving q? That is, proving K_2 with the added assumption q? We obtain K_2 from p? This represents a loop in a proof.

¹:)

We know how to represent ASP in IPC.

We are sure that the target fragment of IPC is co-NP-complete.

0

So: we can program ASP in IPC.