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Interactive Proof in Type Theory

· Why do we love it?

· The power we need

· Successful projects today

· Why do we hate it?

· ITPs are stupid

· large parts of proofs are tedious

· Automation for Interactive Proof
· Tableaux: Itaut, Tauto, Blast

· Rewriting: Simp, Subst, HORewrite

· Decision Procedures: Congruence Closure, Ring, Omega, Cooper, ...

· AI/ATP techniques: Hammers
· MizAR for Mizar

· Sledgehammer for Isabelle/HOL

· HOL(y)Hammer for HOL Light and HOL4
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Hammer Overview

Proof Assistant Hammer ATP

Current Goal TPTP

ITP Proof ATP Proof
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Evaluations

Top-level goals:

· HOL(y)Hammer
· Flyspeck text formalization: 47%

· Similar results for HOL4 and CakeML

· Sledgehammer
· Probability theory: 40%

· Term rewriting: 44%

· Java threads: 59%

· MizAR
· Mizar Mathematical Library: 40%

More for subgoals
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For Type Theory?

Premise selection

· Features

· Machine Learning

Encoding CoC and variants in formalisms of ATPs

· Soundness? Completeness? Efficiency!

· This talk

Reconstruction: Get an ITP proof

· Extract information from the ATP proof

· Redo the proof
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Translation
Target logic

Target logic: untyped FOL with equality.
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Translation
Three functions F , G and C .

· The function F encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.
· If Γ ` t : Prop then FΓ (Πx : t.s) =FΓ (t)→FΓ ,x:t(s).
· If Γ 6` t : Prop then FΓ (Πx : t.s) = ∀x .GΓ (t, x)→FΓ ,x:t(s).

· The function G encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type τ= Πx : α.β(x) we have

G (τ, f ) = ∀x .G (α, x)→G (β(x), f x)

· The function C encodes Coq terms as FOL terms.
· CΓ (ts) is equal to:

· ε if Γ ` ts : α : Prop,
· CΓ (t) if Γ ` s : α : Prop,
· CΓ (t)CΓ (s) otherwise.

· CΓ (λ~x : ~t.s) = F ~y where s does not start with a lambda-abstraction
any more, F is a fresh constant, ~y = FV(λ~x : ~t.s) and
∀~y .FΓ (∀~x : ~t.F ~y ~x = s) is a new axiom.
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Translation
Translating inductive declarations

For inductive types:

· Translate the typing of each constructor (using the G function).

· Add axioms stating injectivity of constructors, axioms stating
non-equality of different constructors, and the “inversion” axioms
for elements of the inductive type.

· Translate the typing of the inductive definition.

· Translate induction principles and recursor definitions.
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Proof reconstruction

· From an ATP run we obtain a list of FOL axioms that the ATP needed
in the proof.

· Extract from the FOL axiom names the names of the original Coq
lemmas and constructors, and add them to the context.

· Extract from the FOL axiom names the names of definitions used
and try unfolding them (depending on some heuristics).

· Do automatic proof search using our tactic yreconstr.
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Proof search

· Essentially eauto-type proof search.

· In other words: search for η-long normal forms (taking the
permutative conversions into account).

· When doing intro try simplifying the introduced hypothesis,
heurstically rewriting it with other hypotheses, and doing some
simple forward reasoning.

· In the proof search also try rewriting with hypotheses instead of only
applying them.

· When applying a hypothesis try to unify the goal with the hypothesis
target modulo some simple equational reasoning.

· If a subterm of the form match x with . . . occurs in the goal or in one
of the hypotheses, then destruct x .

· Use an isolve tactic at the leaves of the search tree: a combination
of Coq’s congruence, subst, easy, eauto tactics, some
hypotheses simplification and goal splitting.
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Experimental evaluation

· We evaluated the translation and proof reconstruction components
on the Coq standard library.

· ATPs used: Z3, Vampire, E.

· Success rate of the ATPs on translated problems: about 35%.

Prover Solved% Solved Sum% Sum Unique

Vampire 32.9 6839 32.9 6839 855
Z3 27.6 5734 34.9 7265 390
E Prover 25.8 5376 35.3 7337 72

any 35.3 7337 35.3 7337

Table 1: Results of the experimental evaluation on the 20803 FOL problems
generated from the propositions in the Coq standard library.
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Experimental evaluation

· Reconstruction success rate: 90%.

But many of the Coq problems recreated from ATP runs are “easy”:
· about 50% provable using intuition, congruence, auto and

hypotheses simplification.
· about 70% provable using the above plus isolve and exhaustive

search up to depth 2 using eapply and erewrite.
· about 70% provable using firstorder isolve provided that

generic equality axioms are added to the context.
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Experimental evaluation

Tactic Time Solved% Solved

yreconstr 1s 83.1 6097
yreconstr 2s 85.8 6296
yreconstr 5s 87.5 6421
yreconstr 10s 88.1 6466
yreconstr 15s 88.2 6473
simple 1s 50.1 3674
firstorder’ 10s 69.6 5103
jprover 10s 56.1 4114

any 90.1 6609

Table 2: Results of the evaluation of proof reconstruction on the 7337 problems
solved by the ATPs.
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Conclusion

· Provided missing components of a hammer for type theory
· Efficient encoding in FOL

· Able to automatically prove 35% of Coq’s standard library

· Simple reconstruction
· 90% of the ATP-found proofs can be rebuilt in Coq

· Other libraries?
· Mathematical Components / SS-Reflect where different automation?
· Libraries of Matita, Lean, ...?

· Optimize, optimize, optimize!
· Learning
· Translation
· Reconstruction
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