Components of a Hammer for Type Theory Goal Translation and Proof Reconstruction

> Łukasz Czajka Cezary Kaliszyk University of Innsbruck

> > May 24, 2016

• Why do we love it?

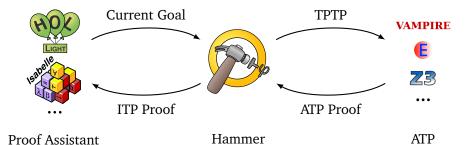
• Why do we hate it?

- · Why do we love it?
 - $\cdot \,$ The power we need
 - · Successful projects today
- · Why do we hate it?
 - ITPs are stupid
 - · large parts of proofs are tedious

- · Why do we love it?
 - $\cdot \,$ The power we need
 - · Successful projects today
- · Why do we hate it?
 - ITPs are stupid
 - · large parts of proofs are tedious
- · Automation for Interactive Proof
 - · Tableaux: Itaut, Tauto, Blast
 - · Rewriting: Simp, Subst, HORewrite
 - · Decision Procedures: Congruence Closure, Ring, Omega, Cooper, ...

- · Why do we love it?
 - $\cdot \,$ The power we need
 - · Successful projects today
- · Why do we hate it?
 - ITPs are stupid
 - · large parts of proofs are tedious
- · Automation for Interactive Proof
 - · Tableaux: Itaut, Tauto, Blast
 - · Rewriting: Simp, Subst, HORewrite
 - · Decision Procedures: Congruence Closure, Ring, Omega, Cooper, ...
- · AI/ATP techniques: Hammers
 - · MizAR for Mizar
 - · Sledgehammer for Isabelle/HOL
 - · HOL(y)Hammer for HOL Light and HOL4

Hammer Overview



Evaluations

Top-level goals:

- · HOL(y)Hammer
 - · Flyspeck text formalization: 47%
 - · Similar results for HOL4 and CakeML
- · Sledgehammer
 - · Probability theory: 40%
 - · Term rewriting: 44%
 - · Java threads: 59%
- MizAR
 - · Mizar Mathematical Library: 40%

More for subgoals

For Type Theory?

Premise selection

- Features
- · Machine Learning

Encoding CoC and variants in formalisms of ATPs

- · Soundness? Completeness? Efficiency!
- \cdot This talk

Reconstruction: Get an ITP proof

- · Extract information from the ATP proof
- $\cdot \, \, {\rm Redo}$ the proof

Target logic

Target logic: untyped FOL with equality.

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\models t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- The function ${\mathcal G}$ encodes types as guards and is used for terms of Coq which have type Type.

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha . \beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha.\beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

· The function $\mathscr C$ encodes Coq terms as FOL terms.

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha.\beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

- $\cdot\,$ The function ${\mathscr C}$ encodes Coq terms as FOL terms.
 - $\mathscr{C}_{\Gamma}(ts)$ is equal to:

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- · The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha . \beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

- $\cdot\,$ The function ${\mathscr C}$ encodes Coq terms as FOL terms.
 - $\mathscr{C}_{\Gamma}(ts)$ is equal to:
 - ε if $\Gamma \vdash ts : \alpha$: Prop,

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- · The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha . \beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

- $\cdot\,$ The function ${\mathscr C}$ encodes Coq terms as FOL terms.
 - $\mathscr{C}_{\Gamma}(ts)$ is equal to:
 - · ε if $\Gamma \vdash ts : \alpha$: Prop,
 - · $\mathscr{C}_{\Gamma}(t)$ if $\Gamma \vdash s : \alpha : Prop$,

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha.\beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

- $\cdot\,$ The function ${\mathscr C}$ encodes Coq terms as FOL terms.
 - $\mathscr{C}_{\Gamma}(ts)$ is equal to:
 - · ε if $\Gamma \vdash ts : \alpha$: Prop,
 - · $\mathscr{C}_{\Gamma}(t)$ if $\Gamma \vdash s : \alpha : \text{Prop}$,
 - · $\mathscr{C}_{\Gamma}(t)\mathscr{C}_{\Gamma}(s)$ otherwise.

Three functions \mathcal{F} , \mathcal{G} and \mathcal{C} .

- The function \mathscr{F} encodes propositions as FOL formulas and is used for terms of Coq having type Prop.
 - If $\Gamma \vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \mathscr{F}_{\Gamma}(t) \to \mathscr{F}_{\Gamma,x:t}(s)$.
 - If $\Gamma \not\vdash t$: Prop then $\mathscr{F}_{\Gamma}(\Pi x : t.s) = \forall x.\mathscr{G}_{\Gamma}(t,x) \to \mathscr{F}_{\Gamma,x:t}(s).$
- $\cdot\,$ The function ${\cal G}$ encodes types as guards and is used for terms of Coq which have type Type.

For instance, for a (closed) type $\tau = \Pi x : \alpha.\beta(x)$ we have

$$\mathscr{G}(\tau, f) = \forall x. \mathscr{G}(\alpha, x) \to \mathscr{G}(\beta(x), fx)$$

- $\cdot\,$ The function ${\mathscr C}$ encodes Coq terms as FOL terms.
 - $\mathscr{C}_{\Gamma}(ts)$ is equal to:
 - · ε if $\Gamma \vdash ts : \alpha$: Prop,
 - · $\mathscr{C}_{\Gamma}(t)$ if $\Gamma \vdash s : \alpha : \text{Prop}$,
 - · $\mathscr{C}_{\Gamma}(t)\mathscr{C}_{\Gamma}(s)$ otherwise.
 - $\mathscr{C}_{\Gamma}(\lambda \vec{x}: \vec{t}.s) = F \vec{y}$ where *s* does not start with a lambda-abstraction any more, *F* is a fresh constant, $\vec{y} = FV(\lambda \vec{x}: \vec{t}.s)$ and $\forall \vec{y}.\mathscr{F}_{\Gamma}(\forall \vec{x}: \vec{t}.F \vec{y} \vec{x} = s)$ is a new axiom.

Translating inductive declarations

For inductive types:

 $\cdot\,$ Translate the typing of each constructor (using the ${\cal G}$ function).

Translating inductive declarations

For inductive types:

- $\cdot\,$ Translate the typing of each constructor (using the ${\cal G}$ function).
- Add axioms stating injectivity of constructors, axioms stating non-equality of different constructors, and the "inversion" axioms for elements of the inductive type.

Translating inductive declarations

For inductive types:

- $\cdot\,$ Translate the typing of each constructor (using the ${\cal G}$ function).
- Add axioms stating injectivity of constructors, axioms stating non-equality of different constructors, and the "inversion" axioms for elements of the inductive type.
- $\cdot\,$ Translate the typing of the inductive definition.

Translating inductive declarations

For inductive types:

- $\cdot\,$ Translate the typing of each constructor (using the ${\cal G}$ function).
- Add axioms stating injectivity of constructors, axioms stating non-equality of different constructors, and the "inversion" axioms for elements of the inductive type.
- · Translate the typing of the inductive definition.
- $\cdot\,$ Translate induction principles and recursor definitions.

• From an ATP run we obtain a list of FOL axioms that the ATP needed in the proof.

- From an ATP run we obtain a list of FOL axioms that the ATP needed in the proof.
- Extract from the FOL axiom names the names of the original Coq lemmas and constructors, and add them to the context.

- From an ATP run we obtain a list of FOL axioms that the ATP needed in the proof.
- Extract from the FOL axiom names the names of the original Coq lemmas and constructors, and add them to the context.
- Extract from the FOL axiom names the names of definitions used and try unfolding them (depending on some heuristics).

- From an ATP run we obtain a list of FOL axioms that the ATP needed in the proof.
- Extract from the FOL axiom names the names of the original Coq lemmas and constructors, and add them to the context.
- Extract from the FOL axiom names the names of definitions used and try unfolding them (depending on some heuristics).
- · Do automatic proof search using our tactic yreconstr.

 $\cdot\,$ Essentially eauto-type proof search.

- $\cdot\,$ Essentially eauto-type proof search.
- · In other words: search for η -long normal forms (taking the permutative conversions into account).

- $\cdot\,$ Essentially eauto-type proof search.
- · In other words: search for η -long normal forms (taking the permutative conversions into account).
- When doing intro try simplifying the introduced hypothesis, heurstically rewriting it with other hypotheses, and doing some simple forward reasoning.

- $\cdot\,$ Essentially eauto-type proof search.
- · In other words: search for η -long normal forms (taking the permutative conversions into account).
- When doing intro try simplifying the introduced hypothesis, heurstically rewriting it with other hypotheses, and doing some simple forward reasoning.
- In the proof search also try rewriting with hypotheses instead of only applying them.

- · Essentially eauto-type proof search.
- · In other words: search for η -long normal forms (taking the permutative conversions into account).
- When doing intro try simplifying the introduced hypothesis, heurstically rewriting it with other hypotheses, and doing some simple forward reasoning.
- In the proof search also try rewriting with hypotheses instead of only applying them.
- When applying a hypothesis try to unify the goal with the hypothesis target modulo some simple equational reasoning.

- · Essentially eauto-type proof search.
- · In other words: search for η -long normal forms (taking the permutative conversions into account).
- When doing intro try simplifying the introduced hypothesis, heurstically rewriting it with other hypotheses, and doing some simple forward reasoning.
- In the proof search also try rewriting with hypotheses instead of only applying them.
- When applying a hypothesis try to unify the goal with the hypothesis target modulo some simple equational reasoning.
- If a subterm of the form match x with... occurs in the goal or in one of the hypotheses, then destruct x.

- · Essentially eauto-type proof search.
- · In other words: search for η -long normal forms (taking the permutative conversions into account).
- When doing intro try simplifying the introduced hypothesis, heurstically rewriting it with other hypotheses, and doing some simple forward reasoning.
- In the proof search also try rewriting with hypotheses instead of only applying them.
- When applying a hypothesis try to unify the goal with the hypothesis target modulo some simple equational reasoning.
- If a subterm of the form match x with... occurs in the goal or in one of the hypotheses, then destruct x.
- Use an isolve tactic at the leaves of the search tree: a combination of Coq's congruence, subst, easy, eauto tactics, some hypotheses simplification and goal splitting.

• We evaluated the translation and proof reconstruction components on the Coq standard library.

- We evaluated the translation and proof reconstruction components on the Coq standard library.
- · ATPs used: Z3, Vampire, E.

- We evaluated the translation and proof reconstruction components on the Coq standard library.
- · ATPs used: Z3, Vampire, E.
- · Success rate of the ATPs on translated problems: about 35%.

- We evaluated the translation and proof reconstruction components on the Coq standard library.
- · ATPs used: Z3, Vampire, E.
- · Success rate of the ATPs on translated problems: about 35%.

Prover	Solved%	Solved	Sum%	Sum	Unique
Vampire	32.9	6839	32.9	6839	855
Z3	27.6	5734	34.9	7265	390
E Prover	25.8	5376	35.3	7337	72
any	35.3	7337	35.3	7337	

Table 1: Results of the experimental evaluation on the 20803 FOL problems generated from the propositions in the Coq standard library.

• Reconstruction success rate: 90%.

· Reconstruction success rate: 90%.

But many of the Coq problems recreated from ATP runs are "easy":

· Reconstruction success rate: 90%.

But many of the Coq problems recreated from ATP runs are "easy":

 about 50% provable using intuition, congruence, auto and hypotheses simplification.

· Reconstruction success rate: 90%.

But many of the Coq problems recreated from ATP runs are "easy":

- about 50% provable using intuition, congruence, auto and hypotheses simplification.
- about 70% provable using the above plus isolve and exhaustive search up to depth 2 using eapply and erewrite.

• Reconstruction success rate: 90%.

But many of the Coq problems recreated from ATP runs are "easy":

- about 50% provable using intuition, congruence, auto and hypotheses simplification.
- about 70% provable using the above plus isolve and exhaustive search up to depth 2 using eapply and erewrite.
- about 70% provable using firstorder isolve provided that generic equality axioms are added to the context.

Tactic	Time	Solved%	Solved
yreconstr	1s	83.1	6097
yreconstr	2s	85.8	6296
yreconstr	5s	87.5	6421
yreconstr	10s	88.1	6466
yreconstr	15s	88.2	6473
simple	1s	50.1	3674
firstorder'	10s	69.6	5103
jprover	10s	56.1	4114
any		90.1	6609

Table 2: Results of the evaluation of proof reconstruction on the 7337 problems solved by the ATPs.

Conclusion

- · Provided missing components of a hammer for type theory
- · Efficient encoding in FOL
 - $\cdot\,$ Able to automatically prove 35% of Coq's standard library
- Simple reconstruction
 - · 90% of the ATP-found proofs can be rebuilt in Coq
- Other libraries?
 - · Mathematical Components / SS-Reflect where different automation?
 - · Libraries of Matita, Lean, ...?
- · Optimize, optimize, optimize!
 - · Learning
 - Translation
 - Reconstruction