
A typed calculus
for unique access and immutability

Paola Giannini(1), Marco Servetto(2), Elena Zucca(3)

(1) University of Piemonte Orientale
(2) Victoria University of Wellington

(3) University of Genova

TYPES 2016

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 1 / 26

Aim

types for expressing immutability and aliasing properties in imperative
languages (e.g., object-based)

store can be seen as a graph of references

each node contains a record of fields which are

either primitive values or references to other nodes

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 2 / 26

each (expression denoting a) reference has a reachable graph

we focus on two properties:

no mutation: the reachable graph cannot be modified
no aliasing: we cannot introduce arcs from/to the reachable graph

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 3 / 26

four type modifiers expressing the possible combinations:

mut

mutation, aliasing
imm

no mutation, aliasing
lent

mutation, no aliasing
read

no mutation, no aliasing

moreover: capsule

isolated portion of store
unique entry point is the reference itself

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 4 / 26

Example: no mutation

ok: w mut, lent
no: w imm, read
no mutation is
a constraint: we cannot mutate v through w
a guarantee: we can assume that nobody else can mutate v

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 5 / 26

Example: no aliasing

ok: w mut, imm
no: w lent, read
no aliasing is only a constraint:
we cannot introduce an alias to v through w
no guarantee on somebody else

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 6 / 26

Example: capsule

isolated portion of store
unique entry point is the reference itself
w is not a capsule
u is a capsule

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 7 / 26

Example: capsule

capsules can be safely “moved”, that is, assigned to both mutable and
immutable references

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 8 / 26

Concepts already proposed in literature

P. Almeida. Balloon types: Controlling sharing of state in data types.
ECOOP’97

J. Boyland. Semantics of fractional permissions with nesting. TOPLAS
32(6), 2010.

D. Clarke, T. Wrigstad. External uniqueness is unique enough. ECOOP’03

C.S. Gordon, M.J. Parkinson, J. Parsons, A. Bromeld, J. Duy. Uniqueness
and reference immutability for safe parallelism. OOPSLA’12

J. Hogg. Islands: Aliasing protection in object-oriented languages.
OOPSLA’91

K. Naden, R. Bocchino, J. Aldrich, K. Bierho. A type system for
borrowing permissions. POPL’12.

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 9 / 26

Novelties

1 integration of concepts
2 expressivity enhanced by promotion rules

an expression can be promoted to a more specific type provided that
external references are used in a restricted way

3 execution model as pure calculus [only shown by examples]

no memory, just rewriting source code
object graphs are represented at the syntactic level
allows simpler statement and proof of propoerties

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 10 / 26

Subtyping hierarchy and promotions

M

C

I

L

R

M Mutable: alias, write

I Immutable: alias, no write

C Capsule: unique access
Reference used only once

L
Lent: no alias, write

R
Readable: no alias, no write

Subtype
Promotion

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 11 / 26

Syntax

convention: ds is a sequence of d

Java-like flavour is matter of taste

cd ::= class C {fds mds} class declaration
fd ::= C f field declaration
md ::= T m µ (T1 x1, . . . ,Tn xn) {return e} method declaration
e ::= x | e.f | e.m(es) | e.f=e′ | new C(es) | {ds e} expression
d ::= Tx =e variable declaration

T ::= µC | int type
µ ::= imm | mut | capsule | lent | read type modifier

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 12 / 26

Type system

simplified version: only capsule promotion

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 13 / 26

Typing judgment

T ::= µC | int type
µ ::= imm | mut | capsule | lent | read type modifier

∆ ::= Γ; xss type context
Γ ::= x1:T1 . . . xn:Tn type assignment
xss ::= xs1 . . . xsn lent-restricted variables

Γ; xs1 . . . xsn ` e : T

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 14 / 26

Typing judgment

Γ; xss ` e : T

variables which are mutable in Γ are partitioned in n + 1 groups:

xss = xs1 . . . xsn = lent-restricted variables = can only be used as lent

xs0 = dommut(Γ)\xss = unrestricted mutable variables

no aliasing is introduced among (portions of store reachable from) xs0, xs1, . . . , xsn

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 15 / 26

Typing rules (1)

a group of lent-restricted variables is introduced by promotion rule

(t-prom)
Γ; xss xs ` e : C

Γ; xss ` e : capsuleC
xs = dommut(Γ)\xss

an expression can be promoted to capsule if all external references are
only used as lent

xs = currently unrestricted mutable variables which become lent-restricted

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 16 / 26

Typing rules (2)

a group can become unrestricted by swapping

(t-swap)
Γ; xss xs′ ` e : µC

Γ; xss xs ` e : µ′ C

xs′ = dommut(Γ)\(xss xs)

µ′ =

{
lent if µ = ε

µ otherwise

xs = lent-restricted variables which become available

xs′ = currently unrestricted mutable variables which become lent-restricted

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 17 / 26

Example: capsule promotion

a capsule uses external references only as lent

D z= new D(0)

capsule C x= {
D y= new D(z.f+1)

new C(y,y) }
x

−→?

D z= new D(0)

capsule C x= {
D y= new D(1)

new C(y,y) }
x

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 18 / 26

Counterexample

D z= new D(0)

capsule C x= { //ill-typed

D y= z

new C(y,y) }
x

−→
D z= new D(0)

C x= new C(z,z)

x

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 19 / 26

Example: swapping

How to modify (the object denoted by) a lent reference?

lent D z= new D(0)

z.f=z.f+1

the singleton group z is swapped with the empty set

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 20 / 26

Example: swapping to achieve promotion

D z= new D(0)

capsule C x= (

D y= new D(z.f=z.f+1)

new C(y,y))

x

−→?

D z= new D(1)

capsule C x= (

D y= new D(1)

new C(y,y))

x

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 21 / 26

Typing rules (3)

(t-sub)
∆ ` e : T

∆ ` e : T′ T ≤ T′

(t-var)
Γ; xss ` x : µ′ C

Γ(x) = µC

µ′ =

{
lent if x ∈ xss

µ otherwise

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 22 / 26

Typing rules (4)

(t-field-access)
∆ ` e : µC

∆ ` e.f : µCi

fields(C) = C1 f1 . . .Cn fn
f = fi

(t-meth-call)
∆ ` ei : Ti ∀i ∈ 0..n

∆ ` e0.m(e1, . . . , en) : T

T0 = µC
mtype(C,m) = 〈T, µ,T1 . . .Tn〉

(t-field-assign)
∆ ` e : C ∆ ` e′ : Ci

∆ ` e.f=e′ : Ci

fields(C) = C1 f1 . . .Cn fn
f = fi

(t-new)
∆ ` ei : Ci ∀i ∈ 1..n

∆ ` new C(e1, . . . , en) : C
fields(C) = C1 f1 . . .Cn fn

(t-block)
Γ[Γ′]; xss ` ei : Ti ∀i ∈ 1..n Γ[Γ′]; xss ` e : T

Γ; xss ` {T1 x1 =e1 . . .Tn xn =en e} : T
Γ′ = x1:T1 . . . xn:Tn

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 23 / 26

Results

Soundness
If ` e, and e −→? e′, then either e′ is a value, or e′ −→

Modifiers have the expected behaviour, e.g.
a capsule expression reduces to a closed value

If ` E [e], Γ = typectx(E),
Γ; ∅ ` e : capsuleC, and E [e] −→? E ′[v],
then v is closed

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 24 / 26

Conclusion

Conclusion

Key contributions:

powerful type system for tracing mutation and aliasing

non standard operational model of imperative features as a pure
calculus: properties of modifiers are expressed on terms

part of the design of the novel language L42, aimed at massive use of
libraries
L42.is

long term goal: Hoare-like logic for the model

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 25 / 26

Conclusion

Thanks

Giannini-Servetto-Zucca (UPO-VUW-Unige) Unique access and immutability TYPES 2016 26 / 26

	Conclusion

