

Joint work with...

Neil Ghani (Strathclyde)

Alex Simpson (Ljubljana)

Parametric polymorphism [Strachey, 1967]

A polymorphic program

 $t: \forall \alpha. A$

is parametric if it applies the same uniform algorithm at all instantiations t[B] of its type parameter.

Typical example:

 $\texttt{reverse}: \forall \alpha. \texttt{List} \ \alpha \rightarrow \texttt{List} \ \alpha$

Reynolds insight: relational parametricity [1983]

Turn the negative statement "not distinguishing types" into the positive statement "preserves all relations".

Reynolds insight: relational parametricity [1983]

Turn the negative statement "not distinguishing types" into the positive statement "preserves all relations".

A polymorphic program $t: \forall \alpha. A$ is relationally parametric if for all relations $R \subseteq B \times B'$,

 $(t[B], t[B']) \in \langle A \rangle(R)$

where $\langle A \rangle(R) \subseteq A(B) \times A(B')$ is the relational interpretation of the type A.

E.g. reverse : $\forall \alpha$. List $\alpha \rightarrow$ List α is relationally parametric.

Applications of relational parametricity

Relational parametricity enables:

- Reasoning about abstract data types.
- Correctness (universal properties) of encodings of data types.
- 'Theorems for free!' [Wadler, 1989].

Usually in the setting of $\lambda 2$ (System F) [Girard, 1972; Reynolds, 1974] — serves as a model type theory for (impredicative) polymorphism.

How can we reason about $\lambda 2$ terms using relational parametricity?

Formal relational parametricity

Will present a minimal type theory $\lambda 2R$ for parametricity reasoning.

Formal relational parametricity

Will present a minimal type theory $\lambda 2R$ for parametricity reasoning.

Backed up by a semantic framework, i.e. the type theory is the 'internal language' of a class of models of $\lambda 2$ (comprehensive $\lambda 2$ parametricity graphs) [Ghani, N. F., and Simpson, 2016].

Extracted from the semantics, but presented independently as a logic/type theory here.

Formal relational parametricity

Will present a minimal type theory $\lambda 2R$ for parametricity reasoning.

Backed up by a semantic framework, i.e. the type theory is the 'internal language' of a class of models of $\lambda 2$ (comprehensive $\lambda 2$ parametricity graphs) [Ghani, N. F., and Simpson, 2016].

Extracted from the semantics, but presented independently as a logic/type theory here.

Expected properties of parametricity can be proved using the type theory, but the proof involves novel ingredients due to minimality of structure:

- definability of direct image relations,
- arguments without use of equality relations, and
- only weak forms of graph relations available ('pseudographs').

Extending $\lambda 2$ with relations: the type theory $\lambda 2R$ Judgement forms of $\lambda 2$:

Γ ctxt	Γ is a context
$\Gamma \vdash A$ type	A is a type in context Γ
$\Gamma \vdash t : A$	term t has type A in context Γ
$\Gamma \vdash t = s : A$	judgemental equality

Note: Single context with term and type variables interleaved — motivated by semantics.

Extending $\lambda 2$ with relations: the type theory $\lambda 2R$ Judgement forms of $\lambda 2$:

Γ ctxt	Γ is a context
$\Gamma \vdash A$ type	A is a type in context Γ
$\Gamma \vdash t : A$	term t has type A in context Γ
$\Gamma \vdash t = s : A$	judgemental equality

Note: Single context with term and type variables interleaved — motivated by semantics.

Extend with new judgement forms about relations:

Θ rctxt	Θ is a relational context
$\Theta \vdash A_1 R A_2$ rel	R is a relation between types A_1 and A_2
$\Theta \vdash (t_1 : A_1) R(t_2 : A_2)$	$t_1:A_1$ is related to $t_2:A_2$ by the relation R

Extending $\lambda 2$ with relations: the type theory $\lambda 2R$ Judgement forms of $\lambda 2$:

Γ ctxt	Γ is a context
$\Gamma \vdash A$ type	A is a type in context Γ
$\Gamma \vdash t : A$	term t has type A in context Γ
$\Gamma \vdash t = s : A$	judgemental equality

Note: Single context with term and type variables interleaved — motivated by semantics.

Extend with new judgement forms about relations:

Θ rctxt	Θ is a relational context
$\Theta \vdash A_1 R A_2$ rel	R is a relation between types A_1 and A_2
$\Theta \vdash (t_1 : A_1) R(t_2 : A_2)$	$t_1: A_1$ is related to $t_2: A_2$ by the relation R

Not conservative extension of $\lambda 2$ — point is to derive stronger properties.

Matthew 6:3

Importantly, in a judgement

$$\Theta \vdash (t_1:A_1)R(t_2:A_2),$$

the "left hand side" $(\Theta)_1 \vdash t_1 : A_1$ and the "right hand side" $(\Theta)_2 \vdash t_2 : A_2$ are treated completely separately.

Matthew 6:3

Importantly, in a judgement

$$\Theta \vdash (t_1:A_1)R(t_2:A_2),$$

the "left hand side" $(\Theta)_1 \vdash t_1 : A_1$ and the "right hand side" $(\Theta)_2 \vdash t_2 : A_2$ are treated completely separately.

For instance, we can substitute $x \mapsto s_1$ on the left and simultaneously $x \mapsto s_2$ on the right.

Matthew 6:3

Importantly, in a judgement

$$\Theta \vdash (t_1:A_1)R(t_2:A_2),$$

the "left hand side" $(\Theta)_1 \vdash t_1 : A_1$ and the "right hand side" $(\Theta)_2 \vdash t_2 : A_2$ are treated completely separately.

For instance, we can substitute $x \mapsto s_1$ on the left and simultaneously $x \mapsto s_2$ on the right.

Imposed by the semantics, with practical consequences: cannot talk about equality relations.

Forgetting relations

Relational judgements contain left and right ordinary judgements:

$$(\cdot)_{i} = \cdot$$
$$(\Theta, \alpha_{1}\rho\alpha_{2})_{i} = (\Theta)_{i}, \alpha_{i}$$
$$(\Theta, (x_{1}:A_{1})R(x_{2}:A_{2}))_{i} = (\Theta)_{i}, x_{i}:A_{i}$$

Forgetting relations

Relational judgements contain left and right ordinary judgements:

$$(\cdot)_{i} = \cdot$$
$$(\Theta, \alpha_{1}\rho\alpha_{2})_{i} = (\Theta)_{i}, \alpha_{i}$$
$$(\Theta, (x_{1}:A_{1})R(x_{2}:A_{2}))_{i} = (\Theta)_{i}, x_{i}:A_{i}$$

Lemma.

$$\begin{array}{l} \Theta \ \mathsf{rctxt} \implies (\Theta)_i \ \mathsf{ctxt} \\ \Theta \vdash A_1 R A_2 \ \mathsf{rel} \implies (\Theta)_i \vdash A_i \ \mathsf{type} \\ \Theta \vdash (t_1 \colon A_1) R(t_2 \colon A_2) \implies (\Theta)_i \vdash t_i \colon A_i \end{array}$$

Inverse image relations

$\frac{\Theta \vdash B_1 R B_2 \text{ rel } (\Theta)_1 \vdash t_1 : A_1 \to B_1 (\Theta)_2 \vdash t_2 : A_2 \to B_2}{\Theta \vdash A_1([t_1 \times t_2]^{-1}R)A_2 \text{ rel}}$

Inverse image relations

$\frac{\Theta \vdash B_1 R B_2 \text{ rel } (\Theta)_1 \vdash t_1 : A_1 \to B_1 (\Theta)_2 \vdash t_2 : A_2 \to B_2}{\Theta \vdash A_1([t_1 \times t_2]^{-1}R)A_2 \text{ rel}}$

$$\frac{\Theta \vdash (t_1 \, u_1 : B_1) R(t_2 \, u_2 : B_2)}{\Theta \vdash (u_1 : A_1) ([t_1 \times t_2]^{-1} R) (u_2 : A_2)}$$

Direct image relations

$$\frac{\Theta \vdash A_1 R A_2 \text{ rel } (\Theta)_1 \vdash t_1 : A_1 \to B_1 (\Theta)_2 \vdash t_2 : A_2 \to B_2}{\Theta \vdash B_1([t_1 \times t_2]_! R) B_2 \text{ rel}}$$

Direct image relations

$$\begin{array}{c|c} \Theta \vdash A_1 R A_2 \ \mathsf{rel} & (\Theta)_1 \vdash t_1 : A_1 \to B_1 & (\Theta)_2 \vdash t_2 : A_2 \to B_2 \\ & \Theta \vdash B_1([t_1 \times t_2]_! R) B_2 \ \mathsf{rel} \end{array}$$

are definable by an impredicative encoding

Direct image relations

$$\begin{array}{c|c} \Theta \vdash A_1 R A_2 \ \mathsf{rel} & (\Theta)_1 \vdash t_1 : A_1 \to B_1 & (\Theta)_2 \vdash t_2 : A_2 \to B_2 \\ & \Theta \vdash B_1([t_1 \times t_2]_! R) B_2 \ \mathsf{rel} \end{array}$$

are definable by an impredicative encoding

$$[t_1 \times t_2]_! R \coloneqq [i_{B_1} \times i_{B_2}]^{-1} (\forall \alpha \rho \beta. ([(-\circ t_1) \times (-\circ t_2)]^{-1} (R \to \rho)) \to \rho)$$

where i_B abbreviates $\lambda b. \Lambda \alpha. \lambda t. t b : B \to \forall \alpha. (B \to \alpha) \to \alpha$.

Direct image relations

$$\begin{array}{c|c} \Theta \vdash A_1 R A_2 \ \mathsf{rel} & (\Theta)_1 \vdash t_1 : A_1 \to B_1 & (\Theta)_2 \vdash t_2 : A_2 \to B_2 \\ & \Theta \vdash B_1([t_1 \times t_2]_! R) B_2 \ \mathsf{rel} \end{array}$$

are definable by an impredicative encoding

$$[t_1 \times t_2]_! R \coloneqq [i_{B_1} \times i_{B_2}]^{-1} (\forall \alpha \rho \beta. ([(-\circ t_1) \times (-\circ t_2)]^{-1} (R \to \rho)) \to \rho)$$

where i_B abbreviates $\lambda b. \Lambda \alpha. \lambda t. t b : B \to \forall \alpha. (B \to \alpha) \to \alpha.$

Semantically, this means:

Theorem. Every comprehensive $\lambda \mathbf{2}$ parametricity graph contains a family of fibrewise opfibrations.

Direct image relations

$$\begin{array}{c|c} \Theta \vdash A_1 R A_2 \ \mathsf{rel} & (\Theta)_1 \vdash t_1 : A_1 \to B_1 & (\Theta)_2 \vdash t_2 : A_2 \to B_2 \\ & \Theta \vdash B_1([t_1 \times t_2]_! R) B_2 \ \mathsf{rel} \end{array}$$

are definable by an impredicative encoding

$$[t_1 \times t_2]_! R \coloneqq [i_{B_1} \times i_{B_2}]^{-1} (\forall \alpha \rho \beta. ([(-\circ t_1) \times (-\circ t_2)]^{-1} (R \to \rho)) \to \rho)$$

where i_B abbreviates $\lambda b. \Lambda \alpha. \lambda t. t b : B \to \forall \alpha. (B \to \alpha) \to \alpha.$

Semantically, this means:

Theorem. Every comprehensive $\lambda \mathbf{2}$ parametricity graph contains a family of fibrewise opfibrations.

This will also be important for proving the expected properties of parametricity.

Doubling up

Have already seen left and right projections $(\cdot)_1,\,(\cdot)_2.$

Doubling up

Have already seen left and right projections $(\cdot)_1$, $(\cdot)_2$.

Conversely, a "doubling" operation $\langle \cdot \rangle$ takes typing contexts to relational contexts.

Mutually defined with a "relational interpretation" $\langle A \rangle$ of types A.

Doubling up

Have already seen left and right projections $(\cdot)_1$, $(\cdot)_2$.

Conversely, a "doubling" operation $\langle \cdot \rangle$ takes typing contexts to relational contexts.

Mutually defined with a "relational interpretation" $\langle A \rangle$ of types A.

Lemma (Reynold's Abstraction Theorem).

$$\Gamma \vdash t : A \implies \langle \Gamma \rangle \vdash (t : A) \langle A \rangle (t : A)$$

Relatedness rules

$$\overline{\Theta \vdash (x_1 : A_1)R(x_2 : A_2)} \ ((x_1 : A_1)R(x_2 : A_2) \in \Theta)$$

 $\frac{\Theta, (x_1:A_1)R(x_2:A_2) \vdash (t_1:B_1)S(t_2:B_2)}{\Theta \vdash (\lambda x_1. t_1:A_1 \rightarrow B_1)(R \rightarrow S)(\lambda x_2. t_2:A_2 \rightarrow B_2)}$

 $\frac{\Theta \vdash (s_1 : A_1 \rightarrow B_1)(R \rightarrow S)(s_2 : A_2 \rightarrow B_2) \qquad \Theta \vdash (t_1 : A_1)R(t_2 : A_2)}{\Theta \vdash (s_1 t_1 : B_1)S(s_2 t_2 : B_2)}$

 $\frac{\Theta, \ \alpha \rho \beta \vdash (t_1 : A_1) R(t_2 : A_2)}{\Theta \vdash (\Lambda \alpha. \ t_1 : \forall \alpha. \ A_1) (\forall \alpha \rho \beta. \ R) (\Lambda \beta. \ t_2 : \forall \beta. \ A_2)} \quad \frac{\langle \Gamma \rangle \vdash (s : A) \langle A \rangle (t : A)}{\Gamma \vdash s = t : A}$

 $\frac{\Theta \vdash (t_1 : \forall \alpha. A_1) (\forall \alpha \rho \beta. R) (t_2 : \forall \beta. A_2) \qquad \Theta \vdash B_1 S B_2 \text{ rel}}{\Theta \vdash (t_1 [B_1] : A_1 [\alpha \mapsto B_1]) R[\alpha \rho \beta \mapsto B_1 S B_2] (t_2 [B_2] : A_2 [\beta \mapsto B_2])}$ $\frac{\Theta \vdash (t_1 : A_1) R(t_2 : A_2) \qquad \Theta_1 \vdash t_1 = s_1 : A_1 \qquad \Theta_2 \vdash t_2 = s_2 : A_2}{\Theta \vdash (s_1 : A_1) R(s_2 : A_2)}$

$$\frac{\langle \mathsf{\Gamma} \rangle \vdash (s:A) \langle A \rangle (t:A)}{\mathsf{\Gamma} \vdash s = t:A}$$

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

Note: This does *not* make $\langle A \rangle$ an identity relation — the context changes. In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation.

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

Note: This does *not* make $\langle A \rangle$ an identity relation — the context changes. In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation.

True
$$\implies \langle \Gamma \rangle \vdash (t : \forall \alpha. B) (\forall \rho. \langle B \rangle) (t : \forall \alpha. B)$$

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

Note: This does *not* make $\langle A \rangle$ an identity relation — the context changes. In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation.

$$\mathsf{True} \implies \langle \mathsf{\Gamma} \rangle \vdash (t : \forall \alpha. B) (\forall \rho. \langle B \rangle) (t : \forall \alpha. B) \\ \implies \langle \mathsf{\Gamma} \rangle \vdash (t [A_1]) (\langle B \rangle ([f \times g]_! R)) (t [A_2])$$

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

Note: This does *not* make $\langle A \rangle$ an identity relation — the context changes. In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation.

$$\mathsf{True} \implies \langle \mathsf{\Gamma} \rangle \vdash (t : \forall \alpha. B) \big(\forall \rho. \langle B \rangle \big) (t : \forall \alpha. B) \\ \implies \langle \mathsf{\Gamma} \rangle \vdash (t [A_1]) \big(\langle B \rangle ([f \times g]^{-1} R) \big) (t [A_2])$$

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

Note: This does *not* make $\langle A \rangle$ an identity relation — the context changes. In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation.

$$\begin{aligned} \mathsf{True} &\implies \langle \mathsf{\Gamma} \rangle \vdash (t : \forall \alpha. B) (\forall \rho. \langle B \rangle) (t : \forall \alpha. B) \\ &\implies \langle \mathsf{\Gamma} \rangle \vdash (t [A_1]) (\langle B \rangle ([f \times g]^{-1} R)) (t [A_2]) \\ &\implies \dots \\ &\implies \langle \mathsf{\Gamma} \rangle \vdash (f (t [A_1] \vec{s}) : C) \langle C \rangle (g (t [A_2] \vec{s'}) : C) \end{aligned}$$

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t:A}$$

This gives $\lambda 2R$ its power (together with inverse image relations).

Note: This does *not* make $\langle A \rangle$ an identity relation — the context changes. In fact, for open types, $\langle A \rangle$ is not even a homogeneous relation.

$$\begin{aligned} \mathsf{Frue} &\implies \langle \mathsf{\Gamma} \rangle \vdash (t : \forall \alpha. B) (\forall \rho. \langle B \rangle) (t : \forall \alpha. B) \\ &\implies \langle \mathsf{\Gamma} \rangle \vdash (t [A_1]) (\langle B \rangle ([f \times g]^{-1} R)) (t [A_2]) \\ &\implies \dots \\ &\implies \langle \mathsf{\Gamma} \rangle \vdash (f (t [A_1] \vec{s}) : C) \langle C \rangle (g (t [A_2] \vec{s'}) : C) \\ &\implies \mathsf{\Gamma} \vdash f (t [A_1] \vec{s}) = g (t [A_2] \vec{s'}) : C \end{aligned}$$

Subtlety required:

This

Note

In fac

Typic

- Graph relations usually key for arguments.
- No identity relations means only pseudo-graph relations available.
- Two variants, defined using inverse images and direct images.

 $\implies \langle \mathbf{r} \rangle \vdash \langle \mathbf{r} (t [A_1] \mathbf{s}) : \mathbf{c} \rangle \langle \mathbf{c} \rangle \langle \mathbf{g} (t [A_2] \mathbf{s}') : \mathbf{c} \rangle$ $\implies \Gamma \vdash f (t [A_1] \mathbf{s}) = g (t [A_2] \mathbf{s}') : C$

nges.

$$\frac{\langle \Gamma \rangle \vdash (s:A) \langle A \rangle (t:A)}{\Gamma \vdash s = t \cdot A}$$

Subtlety required:

This

Note

In fac

Typic

- Graph relations usually key for arguments.
- No identity relations means only pseudo-graph relations available.
- Two variants, defined using inverse images and direct images.
- With corresponding different properties.

 $\Rightarrow \langle \mathbf{I} \rangle \vdash (\mathbf{I} (\mathbf{I} [A_1] \mathbf{S}) : \mathbf{C}) \langle \mathbf{C} \rangle (\mathbf{g} (\mathbf{I} [A_2] \mathbf{S}) : \mathbf{C}) \rangle$

$$\implies \Gamma \vdash f(t[A_1]\vec{s}) = g(t[A_2]\vec{s'}) : C$$

nges.

Theorem (Consequences of Parametricity). System λ 2R proves: • $\forall \alpha. \alpha \rightarrow \alpha \text{ is } \mathbf{1}.$

- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$

- $(\mathbf{A} \to \mathbf{B} \to \alpha) \to \alpha \text{ is } \mathbf{A} \times \mathbf{B}.$
- $0 \forall \alpha. \alpha is 0.$

- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$
- $\ \bullet \ \forall \alpha. \alpha \ is \ 0.$

- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$
- $\ \bullet \ \forall \alpha. \alpha \ is \ 0.$

- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$
- $\mathbf{0} \quad \forall \alpha. \alpha \text{ is } \mathbf{0}.$

- O The type ∀α. (T(α) → α) → α is the carrier of the initial T-algebra for all functorial type expressions T(α).

- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$

 $0 \forall \alpha. \alpha is 0.$

- O The type ∀α. (T(α) → α) → α is the carrier of the initial T-algebra for all functorial type expressions T(α).
- O The type ∃α. (α → T(α)) × α is the carrier of the final T-coalgebra for all functorial type expressions T(α).

- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$

 $0 \forall \alpha. \alpha is 0.$

- O The type ∀α. (T(α) → α) → α is the carrier of the initial T-algebra for all functorial type expressions T(α).
- O The type ∃α. (α → T(α)) × α is the carrier of the final T-coalgebra for all functorial type expressions T(α).
- Output Terms of type ∀α. F(α, α) → G(α, α) for mixed-variance type expressions F and G are dinatural.

- $0 \forall \alpha. \alpha \to \alpha \text{ is } \mathbf{1}.$
- $(A \to B \to \alpha) \to \alpha \text{ is } A \times B.$

 $0 \forall \alpha. \alpha is 0.$

- O The type ∀α. (T(α) → α) → α is the carrier of the initial T-algebra for all functorial type expressions T(α).
- O The type ∃α. (α → T(α)) × α is the carrier of the final T-coalgebra for all functorial type expressions T(α).
- Output Set in the set of the

Initial algebras use inverse image pseudographs, final coalgebras direct image ones.

Summary

- A type theory $\lambda 2R$ for reasoning about relational parametricity for System F.
- Sound and complete semantics in comprehensive $\lambda 2$ parametricity graphs.
- Proof of consequences of parametricity using the type theory involves novel ingredients:
 - direct image relations via impredicative encoding,
 - no identity relations available, and
 - ▶ two different pseudo-graph relations (using inverse and direct images).
- Future work: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson Comprehensive parametric polymorphism: categorical models and type theory. FoSSaCS 2016.

Summary

- A type theory $\lambda \mathbf{2R}$ for reasoning about relational parametricity for System F.
- Sound and complete semantics in comprehensive $\lambda 2$ parametricity graphs. Thank vou!
- Proof of conservation of conservatio conservatio conservation of conservation of conservation of
 - direct image relations via impredicative encoding,
 - no identity relations available, and
 - ▶ two different pseudo-graph relations (using inverse and direct images).
- Future work: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson Comprehensive parametric polymorphism: categorical models and type theory. FoSSaCS 2016.

Semantic framework

Definition (Comprehensive λ **2 parametricity graph).** A comprehensive λ **2** parametricity graph is a reflexive graph of comprehensive λ **2** fibrations

which is "fibrewise" a parametricity graph.

 $\lambda 2$ fibrations [Seely, 1987; see also Jacobs, 1999]

Definition (λ 2 fibration). A λ 2 fibration is a split fibration $p : \mathbb{T} \to \mathbb{C}$, where the base category \mathbb{C} has finite products, and the fibration:

- is fibred cartesian closed;
- **2** has a split generic object U we write Ω for p U;
- **③** and has fibred-products along projections $X \times \Omega \longrightarrow X$ in \mathbb{C} .

Moreover, the reindexing functors given by the splitting should preserve the above-specified structure in fibres on the nose.

Definition (Comprehensive $\lambda 2$ fibration). A $\lambda 2$ fibration $p : \mathbb{T} \to \mathbb{C}$ is comprehensive if it enjoys the comprehension property: the fibred-terminal-object functor $X \mapsto \mathbf{1}_X : \mathbb{C} \to \mathbb{T}$ has a specified right adjoint $K : \mathbb{T} \to \mathbb{C}$.

Definition (Fibrewise parametricity graph). A reflexive graph of (comprehensive) $\lambda 2$ fibrations

is fibrewise a parametricity graph if for all $W \in \mathcal{R}(\mathbb{C})$ and $X \in \mathbb{C}$: (Relational) $\langle \nabla_1^{\mathbb{T}}, \nabla_2^{\mathbb{T}} \rangle |_{\mathcal{R}(\mathbb{T})_W} : \mathcal{R}(\mathbb{T})_W \to \mathbb{T}_{\nabla_1^{\mathbb{C}}W} \times \mathbb{T}_{\nabla_2^{\mathbb{C}}W}$ is faithful. (Identity property) $\Delta^{\mathbb{T}} |_{\mathbb{T}_X} : \mathbb{T}_X \to \mathcal{R}(\mathbb{T})_{\Delta^{\mathbb{C}}X}$ is full. (Fibration) $\langle \nabla_1^{\mathbb{T}}, \nabla_2^{\mathbb{T}} \rangle |_{\mathcal{R}(\mathbb{T})_W} : \mathcal{R}(\mathbb{T})_W \to \mathbb{T}_{\nabla_1^{\mathbb{C}}W} \times \mathbb{T}_{\nabla_2^{\mathbb{C}}W}$ is a fibration. Moreover, the fibration $\langle \nabla_1^{\mathbb{T}}, \nabla_2^{\mathbb{T}} \rangle |_{\mathcal{R}(\mathbb{T})_W}$ should be cloven, and reindexing should give rise to a cleavage-preserving fibred functor from $\langle \nabla_1^{\mathbb{T}}, \nabla_2^{\mathbb{T}} \rangle |_{\mathcal{R}(\mathbb{T})_W}$ to $\langle \nabla_1^{\mathbb{T}}, \nabla_2^{\mathbb{T}} \rangle |_{\mathcal{R}(\mathbb{T})_{W'}}$.