
A Type Theory for
Comprehensive Parametric Polymorphism

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow

fredrik.nordvall-forsberg@strath.ac.uk

TYPES, Novi Sad, 23 May 2016

mailto:fredrik.nordvall-forsberg@strath.ac.uk


Joint work with...

Neil Ghani (Strathclyde) Alex Simpson (Ljubljana)

2



Parametric polymorphism [Strachey, 1967]

A polymorphic program
t : ∀α.A

is parametric if it applies the same uniform algorithm at all instantiations
t[B] of its type parameter.

Typical example:

reverse : ∀α. List α→ List α

3



Reynolds insight: relational parametricity [1983]

Turn the negative statement “not distinguishing types” into the positive
statement “preserves all relations”.

A polymorphic program t : ∀α.A is relationally parametric if for all
relations R ⊆ B × B ′,

(t[B], t[B ′]) ∈ 〈A〉(R)

where 〈A〉(R) ⊆ A(B)× A(B ′) is the relational interpretation of the type
A.

E.g. reverse : ∀α. List α→ List α is relationally parametric.

4



Reynolds insight: relational parametricity [1983]

Turn the negative statement “not distinguishing types” into the positive
statement “preserves all relations”.

A polymorphic program t : ∀α.A is relationally parametric if for all
relations R ⊆ B × B ′,

(t[B], t[B ′]) ∈ 〈A〉(R)

where 〈A〉(R) ⊆ A(B)× A(B ′) is the relational interpretation of the type
A.

E.g. reverse : ∀α. List α→ List α is relationally parametric.

4



Applications of relational parametricity

Relational parametricity enables:

Reasoning about abstract data types.

Correctness (universal properties) of encodings of data types.

‘Theorems for free!’ [Wadler, 1989].

Usually in the setting of λ2 (System F) [Girard, 1972; Reynolds, 1974] —
serves as a model type theory for (impredicative) polymorphism.

5



How can we reason about λ2 terms using relational parametricity?

6



Formal relational parametricity

Will present a minimal type theory λ2R for parametricity reasoning.

Backed up by a semantic framework, i.e. the type theory is the ‘internal
language’ of a class of models of λ2 (comprehensive λ2 parametricity
graphs) [Ghani, N. F., and Simpson, 2016].

Extracted from the semantics, but presented independently as a logic/type
theory here.

Expected properties of parametricity can be proved using the type theory,
but the proof involves novel ingredients due to minimality of structure:

definability of direct image relations,

arguments without use of equality relations, and

only weak forms of graph relations available (‘pseudographs’).

7



Formal relational parametricity

Will present a minimal type theory λ2R for parametricity reasoning.

Backed up by a semantic framework, i.e. the type theory is the ‘internal
language’ of a class of models of λ2 (comprehensive λ2 parametricity
graphs) [Ghani, N. F., and Simpson, 2016].

Extracted from the semantics, but presented independently as a logic/type
theory here.

Expected properties of parametricity can be proved using the type theory,
but the proof involves novel ingredients due to minimality of structure:

definability of direct image relations,

arguments without use of equality relations, and

only weak forms of graph relations available (‘pseudographs’).

7



Formal relational parametricity

Will present a minimal type theory λ2R for parametricity reasoning.

Backed up by a semantic framework, i.e. the type theory is the ‘internal
language’ of a class of models of λ2 (comprehensive λ2 parametricity
graphs) [Ghani, N. F., and Simpson, 2016].

Extracted from the semantics, but presented independently as a logic/type
theory here.

Expected properties of parametricity can be proved using the type theory,
but the proof involves novel ingredients due to minimality of structure:

definability of direct image relations,

arguments without use of equality relations, and

only weak forms of graph relations available (‘pseudographs’).

7



Extending λ2 with relations: the type theory λ2R
Judgement forms of λ2:

Γ ctxt Γ is a context
Γ ` A type A is a type in context Γ

Γ ` t : A term t has type A in context Γ

Γ ` t = s : A judgemental equality

Note: Single context with term and type variables interleaved —
motivated by semantics.

Extend with new judgement forms about relations:

Θ rctxt Θ is a relational context
Θ ` A1RA2 rel R is a relation between types A1 and A2

Θ ` (t1 :A1)R(t2 :A2) t1 :A1 is related to t2 :A2 by the relation R

Not conservative extension of λ2 — point is to derive stronger properties.

8



Extending λ2 with relations: the type theory λ2R
Judgement forms of λ2:

Γ ctxt Γ is a context
Γ ` A type A is a type in context Γ

Γ ` t : A term t has type A in context Γ

Γ ` t = s : A judgemental equality

Note: Single context with term and type variables interleaved —
motivated by semantics.

Extend with new judgement forms about relations:

Θ rctxt Θ is a relational context
Θ ` A1RA2 rel R is a relation between types A1 and A2

Θ ` (t1 :A1)R(t2 :A2) t1 :A1 is related to t2 :A2 by the relation R

Not conservative extension of λ2 — point is to derive stronger properties.

8



Extending λ2 with relations: the type theory λ2R
Judgement forms of λ2:

Γ ctxt Γ is a context
Γ ` A type A is a type in context Γ

Γ ` t : A term t has type A in context Γ

Γ ` t = s : A judgemental equality

Note: Single context with term and type variables interleaved —
motivated by semantics.

Extend with new judgement forms about relations:

Θ rctxt Θ is a relational context
Θ ` A1RA2 rel R is a relation between types A1 and A2

Θ ` (t1 :A1)R(t2 :A2) t1 :A1 is related to t2 :A2 by the relation R

Not conservative extension of λ2 — point is to derive stronger properties.
8



Matthew 6:3

Importantly, in a judgement

Θ ` (t1 :A1)R(t2 :A2),

the “left hand side” (Θ)1 ` t1 : A1 and the “right hand side” (Θ)2 ` t2 : A2
are treated completely separately.

For instance, we can substitute x 7→ s1 on the left and simultaneously
x 7→ s2 on the right.

Imposed by the semantics, with practical consequences: cannot talk about
equality relations.

9



Matthew 6:3

Importantly, in a judgement

Θ ` (t1 :A1)R(t2 :A2),

the “left hand side” (Θ)1 ` t1 : A1 and the “right hand side” (Θ)2 ` t2 : A2
are treated completely separately.

For instance, we can substitute x 7→ s1 on the left and simultaneously
x 7→ s2 on the right.

Imposed by the semantics, with practical consequences: cannot talk about
equality relations.

9



Matthew 6:3

Importantly, in a judgement

Θ ` (t1 :A1)R(t2 :A2),

the “left hand side” (Θ)1 ` t1 : A1 and the “right hand side” (Θ)2 ` t2 : A2
are treated completely separately.

For instance, we can substitute x 7→ s1 on the left and simultaneously
x 7→ s2 on the right.

Imposed by the semantics, with practical consequences: cannot talk about
equality relations.

9



Forgetting relations

Relational judgements contain left and right ordinary judgements:

(·)i = ·
(Θ, α1ρα2)i = (Θ)i , αi

(Θ, (x1 :A1)R(x2 :A2))i = (Θ)i , xi :Ai

Lemma.

Θ rctxt =⇒ (Θ)i ctxt
Θ ` A1RA2 rel =⇒ (Θ)i ` Ai type

Θ ` (t1 :A1)R(t2 :A2) =⇒ (Θ)i ` ti :Ai

10



Forgetting relations

Relational judgements contain left and right ordinary judgements:

(·)i = ·
(Θ, α1ρα2)i = (Θ)i , αi

(Θ, (x1 :A1)R(x2 :A2))i = (Θ)i , xi :Ai

Lemma.

Θ rctxt =⇒ (Θ)i ctxt
Θ ` A1RA2 rel =⇒ (Θ)i ` Ai type

Θ ` (t1 :A1)R(t2 :A2) =⇒ (Θ)i ` ti :Ai

10



Inverse image relations

Θ ` B1RB2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` A1([t1 × t2]−1R)A2 rel

Θ ` (t1 u1 : B1)R(t2 u2 : B2)

Θ ` (u1 : A1)([t1 × t2]−1R)(u2 : A2)

11



Inverse image relations

Θ ` B1RB2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` A1([t1 × t2]−1R)A2 rel

Θ ` (t1 u1 : B1)R(t2 u2 : B2)

Θ ` (u1 : A1)([t1 × t2]−1R)(u2 : A2)

11



Direct image relations
Direct image relations

Θ ` A1RA2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` B1([t1 × t2]!R)B2 rel

are definable by an impredicative encoding

Semantically, this means:

Theorem. Every comprehensive λ2 parametricity graph contains a family
of fibrewise opfibrations.

This will also be important for proving the expected properties of
parametricity.

12



Direct image relations
Direct image relations

Θ ` A1RA2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` B1([t1 × t2]!R)B2 rel

are definable by an impredicative encoding

Semantically, this means:

Theorem. Every comprehensive λ2 parametricity graph contains a family
of fibrewise opfibrations.

This will also be important for proving the expected properties of
parametricity.

12



Direct image relations
Direct image relations

Θ ` A1RA2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` B1([t1 × t2]!R)B2 rel

are definable by an impredicative encoding

[t1 × t2]!R := [iB1 × iB2 ]−1(∀αρβ. ([(− ◦ t1)× (− ◦ t2)]−1(R → ρ))→ ρ)

where iB abbreviates λb.Λα. λt. t b : B → ∀α. (B→α)→α.

Semantically, this means:

Theorem. Every comprehensive λ2 parametricity graph contains a family
of fibrewise opfibrations.

This will also be important for proving the expected properties of
parametricity.

12



Direct image relations
Direct image relations

Θ ` A1RA2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` B1([t1 × t2]!R)B2 rel

are definable by an impredicative encoding

[t1 × t2]!R := [iB1 × iB2 ]−1(∀αρβ. ([(− ◦ t1)× (− ◦ t2)]−1(R → ρ))→ ρ)

where iB abbreviates λb.Λα. λt. t b : B → ∀α. (B→α)→α.

Semantically, this means:

Theorem. Every comprehensive λ2 parametricity graph contains a family
of fibrewise opfibrations.

This will also be important for proving the expected properties of
parametricity.

12



Direct image relations
Direct image relations

Θ ` A1RA2 rel (Θ)1 ` t1 : A1 → B1 (Θ)2 ` t2 : A2 → B2

Θ ` B1([t1 × t2]!R)B2 rel

are definable by an impredicative encoding

[t1 × t2]!R := [iB1 × iB2 ]−1(∀αρβ. ([(− ◦ t1)× (− ◦ t2)]−1(R → ρ))→ ρ)

where iB abbreviates λb.Λα. λt. t b : B → ∀α. (B→α)→α.

Semantically, this means:

Theorem. Every comprehensive λ2 parametricity graph contains a family
of fibrewise opfibrations.

This will also be important for proving the expected properties of
parametricity.

12



Doubling up

Have already seen left and right projections (·)1, (·)2.

Conversely, a “doubling” operation 〈·〉 takes typing contexts to relational
contexts.

Mutually defined with a “relational interpretation” 〈A〉 of types A.

Lemma (Reynold’s Abstraction Theorem).

Γ ` t : A =⇒ 〈Γ〉 ` (t : A)〈A〉(t : A)

13



Doubling up

Have already seen left and right projections (·)1, (·)2.

Conversely, a “doubling” operation 〈·〉 takes typing contexts to relational
contexts.

Mutually defined with a “relational interpretation” 〈A〉 of types A.

Lemma (Reynold’s Abstraction Theorem).

Γ ` t : A =⇒ 〈Γ〉 ` (t : A)〈A〉(t : A)

13



Doubling up

Have already seen left and right projections (·)1, (·)2.

Conversely, a “doubling” operation 〈·〉 takes typing contexts to relational
contexts.

Mutually defined with a “relational interpretation” 〈A〉 of types A.

Lemma (Reynold’s Abstraction Theorem).

Γ ` t : A =⇒ 〈Γ〉 ` (t : A)〈A〉(t : A)

13



Relatedness rules

Θ ` (x1 : A1)R(x2 : A2)
((x1 : A1)R(x2 : A2) ∈ Θ)

Θ, (x1 : A1)R(x2 : A2) ` (t1 : B1)S(t2 : B2)

Θ ` (λx1. t1 : A1 → B1)(R → S)(λx2. t2 : A2 → B2)

Θ ` (s1 : A1 → B1)(R → S)(s2 : A2 → B2) Θ ` (t1 : A1)R(t2 : A2)

Θ ` (s1 t1 : B1)S(s2 t2 : B2)

Θ, αρβ ` (t1 : A1)R(t2 : A2)

Θ ` (Λα. t1 : ∀α.A1)
(
∀αρβ.R

)
(Λβ. t2 : ∀β.A2)

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

Θ ` (t1 : ∀α.A1)
(
∀αρβ.R

)
(t2 : ∀β.A2) Θ ` B1SB2 rel

Θ ` (t1[B1] : A1[α 7→ B1])R[αρβ 7→ B1SB2](t2[B2] : A2[β 7→ B2])

Θ ` (t1 : A1)R(t2 : A2) Θ1 ` t1 = s1 : A1 Θ2 ` t2 = s2 : A2

Θ ` (s1 : A1)R(s2 : A2)
14



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉(R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉(R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉(R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉(R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]!R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15

Subtlety required:

Graph relations usually key for arguments.

No identity relations means only pseudo-graph relations
available.

Two variants, defined using inverse images and direct
images.

With corresponding different properties.



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15

Subtlety required:

Graph relations usually key for arguments.

No identity relations means only pseudo-graph relations
available.

Two variants, defined using inverse images and direct
images.

With corresponding different properties.



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15

Subtlety required:

Graph relations usually key for arguments.

No identity relations means only pseudo-graph relations
available.

Two variants, defined using inverse images and direct
images.

With corresponding different properties.



The parametricity rule

〈Γ〉 ` (s : A)〈A〉(t : A)

Γ ` s = t : A

This gives λ2R its power (together with inverse image relations).

Note: This does not make 〈A〉 an identity relation — the context changes.
In fact, for open types, 〈A〉 is not even a homogeneous relation.

Typical pattern:

True =⇒ 〈Γ〉 ` (t : ∀α.B)
(
∀ρ. 〈B〉

)
(t : ∀α.B)

=⇒ 〈Γ〉 ` (t [A1])
(
〈B〉([f × g ]−1R)

)
(t [A2])

=⇒ . . .

=⇒ 〈Γ〉 ` (f (t [A1]~s) : C )〈C 〉(g (t [A2] ~s ′) : C )

=⇒ Γ ` f (t [A1]~s) = g (t [A2] ~s ′) : C

15

Subtlety required:

Graph relations usually key for arguments.

No identity relations means only pseudo-graph relations
available.

Two variants, defined using inverse images and direct
images.

With corresponding different properties.



Theorem (Consequences of Parametricity). System λ2R proves:

1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Theorem (Consequences of Parametricity). System λ2R proves:
1 ∀α. α→ α is 1.

2 ∀α. (A→ B → α)→ α is A× B.

3 ∀α. α is 0.

4 ∀α. (A→α)→(B→α)→α is A+B.

5 ∀α. (∀β. (T (β)→ α))→ α is ∃α.T (α).

6 The type ∀α. (T (α)→ α)→ α is the carrier of the initial T -algebra
for all functorial type expressions T (α).

7 The type ∃α. (α→ T (α))× α is the carrier of the final T -coalgebra
for all functorial type expressions T (α).

8 Terms of type ∀α.F (α, α)→ G (α, α) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.

16



Summary
A type theory λ2R for reasoning about relational parametricity for
System F.

Sound and complete semantics in comprehensive λ2 parametricity
graphs.

Proof of consequences of parametricity using the type theory involves
novel ingredients:
I direct image relations via impredicative encoding,
I no identity relations available, and
I two different pseudo-graph relations (using inverse and direct images).

Future work: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and
type theory.
FoSSaCS 2016.

17



Summary
A type theory λ2R for reasoning about relational parametricity for
System F.

Sound and complete semantics in comprehensive λ2 parametricity
graphs.

Proof of consequences of parametricity using the type theory involves
novel ingredients:
I direct image relations via impredicative encoding,
I no identity relations available, and
I two different pseudo-graph relations (using inverse and direct images).

Future work: Extend to e.g. dependent type theory.

Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and
type theory.
FoSSaCS 2016.

17

Thank you!



Semantic framework

Definition (Comprehensive λ2 parametricity graph). A
comprehensive λ2 parametricity graph is a reflexive graph of comprehensive
λ2 fibrations

R(T)

∇T
1 , ∆T, ∇T

2-
� - T

R(C)

pR

? -
� -

∇C
1 , ∆C, ∇C

2

C

p

?

which is “fibrewise” a parametricity graph.

18



λ2 fibrations [Seely, 1987; see also Jacobs, 1999]

Definition (λ2 fibration). A λ2 fibration is a split fibration p : T→ C,
where the base category C has finite products, and the fibration:

1 is fibred cartesian closed;

2 has a split generic object U — we write Ω for p U;

3 and has fibred-products along projections X × Ω - X in C.
Moreover, the reindexing functors given by the splitting should preserve the
above-specified structure in fibres on the nose.

Definition (Comprehensive λ2 fibration). A λ2 fibration p : T→ C is
comprehensive if it enjoys the comprehension property: the
fibred-terminal-object functor X 7→ 1X : C→ T has a specified right
adjoint K : T→ C.

19



Definition (Fibrewise parametricity graph).
A reflexive graph of (comprehensive) λ2 fibrations

R(T)

∇T
1 , ∆T, ∇T

2-� - T

R(C)

pR

? -� -

∇C
1 , ∆C, ∇C

2

C

p

?

is fibrewise a parametricity graph if for all W ∈ R(C) and X ∈ C:
(Relational) 〈∇T

1 ,∇T
2 〉�R(T)W : R(T)W → T∇C

1W×T∇C
2W is faithful.

(Identity property) ∆T �TX : TX → R(T)∆CX is full.

(Fibration) 〈∇T
1 ,∇T

2 〉�R(T)W : R(T)W → T∇C
1W×T∇C

2W is a fibration.
Moreover, the fibration 〈∇T

1,∇
T
2〉�R(T)W

should be cloven, and reindexing should give rise to a cleavage-preserving

fibred functor from 〈∇T
1,∇

T
2〉�R(T)W

to 〈∇T
1,∇

T
2〉�R(T)W ′ .

20


	Introduction
	A type theory for relational parametricity
	Consequences of parametricity
	Summary
	Extra slides
	Semantic framework


