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Parametric polymorphism [Strachey, 1967]

A polymorphic program
t:Va. A

is parametric if it applies the same uniform algorithm at all instantiations
t[B] of its type parameter.

Typical example:

reverse : Vo.List o« — List «



Reynolds insight: relational parametricity [1983]

Turn the negative statement “not distinguishing types” into the positive
statement “preserves all relations”.



Reynolds insight: relational parametricity [1983]

Turn the negative statement “not distinguishing types” into the positive
statement “preserves all relations”.

A polymorphic program t : Va. A is relationally parametric if for all
relations R C B x B/,

(t[B], t[B) € (A)(R)

where (A)(R) C A(B) x A(B’) is the relational interpretation of the type
A.

E.g. reverse : Va.List a — List « is relationally parametric.



Applications of relational parametricity

Relational parametricity enables:

@ Reasoning about abstract data types.
o Correctness (universal properties) of encodings of data types.
o ‘Theorems for free!” [Wadler, 1989].

Usually in the setting of A2 (System F) [Girard, 1972; Reynolds, 1974] —
serves as a model type theory for (impredicative) polymorphism.



How can we reason about \2 terms using relational parametricity?
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Formal relational parametricity

Will present a minimal type theory A2R for parametricity reasoning.

Backed up by a semantic framework, i.e. the type theory is the ‘internal
language’ of a class of models of A2 (comprehensive A2 parametricity
graphs) [Ghani, N. F., and Simpson, 2016].

Extracted from the semantics, but presented independently as a logic/type
theory here.

Expected properties of parametricity can be proved using the type theory,
but the proof involves novel ingredients due to minimality of structure:

o definability of direct image relations,
@ arguments without use of equality relations, and

@ only weak forms of graph relations available (‘pseudographs’).
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Judgement forms of \2:

[N ctxt I" is a context
= A type A'is a type in context I
N-t: A term t has type A in context I’
NM-t=s:A judgemental equality

Note: Single context with term and type variables interleaved —
motivated by semantics.
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Extending A2 with relations: the type theory A2R
Judgement forms of \2:

[N ctxt I" is a context
= A type A'is a type in context I
N-t: A term t has type A in context I’
NM-t=s:A judgemental equality

Note: Single context with term and type variables interleaved —
motivated by semantics.

Extend with new judgement forms about relations:

© rctxt © is a relational context
O ALRA, rel R is a relation between types A; and A
O F (t1:A1)R(t2: A2) t;: Ay is related to tr: Ay by the relation R

Not conservative extension of A2 — point is to derive stronger properties.
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Matthew 6:3

Importantly, in a judgement
OF (tl ZAl)R(tQZAg),

the “left hand side” (©);1 F t1 : A; and the “right hand side” (©)2 F t : Ay
are treated completely separately.

For instance, we can substitute x — s; on the left and simultaneously
X —> s on the right.

Imposed by the semantics, with practical consequences: cannot talk about
equality relations.



Forgetting relations

Relational judgements contain left and right ordinary judgements:

()i
(©, a1paz)i = (©);,
(0, (x1:A1)R(x2:A2))i = (©);, xi: Aj
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Forgetting relations

Relational judgements contain left and right ordinary judgements:

()i
(©, a1paz)i = (©);,
(0, (x1:A1)R(x2:A2))i = (©);, xi: Aj

Lemma.
O rctxt = (©); ctxt

OF AIRA; rel = (@); F A; type
OF (tliAl)R(tgiAz) — (@), F ot A
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Inverse image relations

Sl BlRBz reI

(@)1"{'12/41—)81 (@)2"1‘22/42—)82

O F Ai([t1 X 2] IR)A; rel
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Inverse image relations

© F B1RBy rel (@)1 Ft: A — B (@)2 Ft: A — B

O F A1([t1 x ] IR)A; rel

Or (tl uy : Bl)R(tQ u Bz)
Chs (Ul : Al)([tl X tz]ilR)(UQ : A2)
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Direct image relations

O+ A1 RA2 rel

(@)1|_t1:A1—>Bl (@)2"1‘2:142—)52
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Direct image relations

Direct image relations

O F A1 RA, rel (@)1 Ft: A — B (@)2 Ft:A— B>
Or Bl([tl X Z‘Q]!R)Bz rel

are definable by an impredicative encoding
[t1 % &2]iR = [ig, * ig,]  (VapB. ([(— o t1) X (= o &2)] (R = p)) = p)
where ig abbreviates Ab.Aa. At.tb: B — Va.(B—a)—a.

Semantically, this means:

Theorem. Every comprehensive A2 parametricity graph contains a family
of fibrewise opfibrations.

This will also be important for proving the expected properties of
parametricity.
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Doubling up

Have already seen left and right projections (-)1, (-)2.

Conversely, a “"doubling” operation (-) takes typing contexts to relational
contexts.

Mutually defined with a “relational interpretation” (A) of types A.
Lemma (Reynold’s Abstraction Theorem).

FTEt:A = () F(t: A(A)(t: A)

13



Relatedness rules

OF (t: Va.Al)(Va,oB. R)(t2 V5. Az) ©F B1SB, rel

Sl (tl[Bl] : Al[a — Bl])R[(Xpﬁ — 81582](t2[82] : Az[ﬁ — B2])

14



The parametricity rule

(M) F(s: A)(A)(t: A)

lFs=t:A
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The parametricity rule

(M F(s: A)(A)(t:A)
lEs=t:A

This gives A2R its power (together with inverse image relations).

Note: This does not make (A) an identity relation — the context changes.
In fact, for open types, (A) is not even a homogeneous relation.

Typical pattern:

True = (M)t (t: Vo B)(Vp. (B))(t : Va. B)

= (M) F (t[AD)((B)(If x g]7'R))(t[A2])

= (M) F (f(t[A]3): O)(C)(g (t[A]s): C)
— T+ f(t[A]3) =g (t[A]s): C
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The parametricity rule

This

Note
In fa

Typid

(N F(s: A)(A(t:A)
[ et A

Subtlety required:

o Graph relations usually key for arguments.

o No identity relations means only pseudo-graph relations
available.

@ Two variants, defined using inverse images and direct
images.

o With corresponding different properties.

Inges.

By ArieALs) - LT E (tA2]s7) - L)
— T+ f(t[A]3) =g (t[A]s): C

15
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Theorem (Consequences of Parametricity). System A2R proves:
Q Va.a—aisl.

Q@ Va.(A—-B—a)—>aisAxB.

Q Va.a is 0.

Q Va.(A—a)—(B—a)—ais A+B.

Q Va.(VB.(T(B) — a)) — ais Ja. T(a).

@ The type Va.(T(a) — a) — « is the carrier of the initial T-algebra
for all functorial type expressions T («).

@ The type Ja. (o — T(«)) X v is the carrier of the final T-coalgebra
for all functorial type expressions T («).

@ Terms of type Va. F(a, ) — G(a, «v) for mixed-variance type
expressions F and G are dinatural.

Initial algebras use inverse image pseudographs, final coalgebras direct
image ones.
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Summary

@ A type theory A\2R for reasoning about relational parametricity for
System F.

@ Sound and complete semantics in comprehensive A2 parametricity
graphs.

@ Proof of consequences of parametricity using the type theory involves
novel ingredients:

» direct image relations via impredicative encoding,

> no identity relations available, and

» two different pseudo-graph relations (using inverse and direct images).
o Future work: Extend to e.g. dependent type theory.

B Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and
type theory.
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» no identity relations available, and

» two different pseudo-graph relations (using inverse and direct images).
o Future work: Extend to e.g. dependent type theory.

B Neil Ghani, Fredrik Nordvall Forsberg and Alex Simpson
Comprehensive parametric polymorphism: categorical models and
type theory.

17



Semantic framework

Definition (Comprehensive \2 parametricity graph). A
comprehensive A2 parametricity graph is a reflexive graph of comprehensive
A2 fibrations

vI, AT, VI
R(T) T
pR p
R(C) - C
ve, At VS

which is “fibrewise” a parametricity graph.

18



A2 fibrations [Seely, 1987; see also Jacobs, 1999]

Definition (A2 fibration). A A2 fibration is a split fibration p: T — C,
where the base category C has finite products, and the fibration:

@ is fibred cartesian closed:
@ has a split generic object U — we write Q for p U;
© and has fibred-products along projections X x 2 —— X in C.

Moreover, the reindexing functors given by the splitting should preserve the
above-specified structure in fibres on the nose.

Definition (Comprehensive A2 fibration). A A2 fibration p: T — C is
comprehensive if it enjoys the comprehension property: the
fibred-terminal-object functor X — 1x : C — T has a specified right
adjoint K : T — C.

10



Definition (Fibrewise parametricity graph).
A reflexive graph of (comprehensive) A2 fibrations

VI, AT, v
R(T) ——— T

R

P P

R(C)—————=¢C
Ve, AC, v§

is fibrewise a parametricity graph if for all W € R(C) and X € C:
(Relational) (V1,V3) Ir(m)y : R(T)w — Toew % Tygy is faithful.
(Identity property) AT 1, : Tx — R(T)acy is full.

(Fibration) (V1,V3) =y R(T)w — Tyew X Tygyy is a fibration.
Moreover, the fibration (ler, Vg) rR(T)W should be cloven, and reindexing should give rise to a cleavage-preserving

fibred functor from (V’{,Vg) IR(T)y, t© (V?,Vg) [R(—ﬂ-)wl.

20
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