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Truth tables

Classically, the meaning of a propositional connective is fixed by its
truth table. This immediately implies

• consistency,

• a decision procedure,

• completeness (w.r.t. Boolean algebra’s).

Intuitionistically, the meaning of a connective is fixed by explaining
what a proof is that involves the connective.
Basically, this explains the introduction rule for the connective.
By analysing proofs we can then also get

• consistency (from proof normalization and analysing normal
deductions),

• a decision procedure (from the subformula property for normal
deductions),

• completeness (w.r.t. Heyting algebra’s).
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Natural Deduction rules from truth tables

Let c be an n-ary connective c with truth table tc and write
Φ = c(A1, . . . ,An).
Each row of tc gives rise to an elimination rule or an introduction
rule for c .

A1 . . . An Φ
a1 . . . an 0

7→
` Φ . . . ` Aj (if aj = 1) . . .Ai ` D (if ai = 0) . . .

el
` D

A1 . . . An Φ
b1 . . . bn 1

7→
. . . ` Aj (if bj = 1) . . .Ai ` Φ (if bi = 0) . . .

ini

` Φ

A1 . . . An Φ
b1 . . . bn 1

7→
Φ ` D . . . ` Aj (if bj = 1) . . .Ai ` D (if bi = 0) . . .

inc

` D
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Examples

Intuitionistic rules for ∧ (3 elim rules and one intro rule):

A B A ∧ B
0 0 0
0 1 0
1 0 0
1 1 1

` A ∧ B A ` D B ` D
∧-ela

` D

` A ∧ B A ` D ` B
∧-elb

` D

` A ∧ B ` A B ` D
∧-elc

` D

` A ` B
∧-in

` A ∧ B

• These rules can be shown to be equivalent to the well-known
intuitionistic rules.

• These rules can be optimized to 3 rules.
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Examples

Rules for ¬: 1 elimination rule and 1 introduction rule.

A ¬A
0 1
1 0

Intuitionistic:

` ¬A ` A
¬-el

` D

A ` ¬A
¬-ini

` ¬A

Classical:

` ¬A ` A
¬-el

` D

¬A ` D A ` D
¬-inc

` D
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Lemma I to simplify the rules

` Φ1 . . . ` Φn Ψ1 ` D . . . Ψm ` D A ` D

` D

` Φ1 . . . ` Φn ` A Ψ1 ` D . . . Ψm ` D

` D

is equivalent to the system with these two rules replaced by

` Φ1 . . . ` Φn Ψ1 ` D . . . Ψm ` D

` D
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Lemma II to simplify the rules

A system with a deduction rule of the form to the left is equivalent
to the system with this rule replaced by the rule on the right.

` Φ1 . . . ` Φn Ψ ` D

` D

` Φ1 . . . ` Φn

` Ψ
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The intuitionistic connectives

We have already seen the ∧,¬ rules. The optimised rules for
∨,→,> and ⊥ we obtain are:

` A ∨ B A ` D B ` D
∨-el

` D

` A
∨-in1

` A ∨ B

` B
∨-in2

` A ∨ B

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` A→ B
→ -in2

` A→ B

>-in
` >

` ⊥
⊥-el

` D
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The rules for the classical → connective

Deduction of Peirce’s law:

` A→ B ` A
→ -el

` B

` B
→ -in1

` A→ B

A ` D A→ B ` D
→ -inc

2
` D

A ` A

A ` ((A→ B)→ A)→ A

(A→ B)→ A ` (A→ B)→ A A→ B ` A→ B

A→ B, (A→ B)→ A ` A

A→ B, (A→ B)→ A ` ((A→ B)→ A)→ A

A→ B ` ((A→ B)→ A)→ A
→ -inc

2

` ((A→ B)→ A)→ A
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The “If Then Else” connective

Notation: A→B/C for if A thenB elseC .

p q r p→q/r
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

The optimized intuitionistic rules are:

` A→B/C ` A
then-el

` B

` A→B/C A ` D C ` D
else-el

` D

` A ` B
then-in

` A→B/C

A ` A→B/C ` C
else-in

` A→B/C
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“If Then Else” +>+⊥ is functionally complete

We define the usual intuitionistic connectives in terms of
if-then-else, > and ⊥:

A ∨̇ B := A→A/B A ∧̇ B := A→B/A A →̇ B := A→B/> ¬̇A := A→⊥/>

Lemma The defined connectives satisfy the original deduction
rules for these same connectives.

Corollary The intuitionistic connective if-then-else, together
with > and ⊥, is functionally complete.
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Kripke semantics for the intuitionistic rules

For each n-ary connective c , we assume a truth table
tc : {0, 1}n → {0, 1} and the defined deduction rules.

Definition A Kripke model is a triple (W ,≤, at) where W is a
set of worlds, ≤ a reflexive, transitive relation on W and a function
at : W → ℘(At) satisfying w ≤ w ′ ⇒ at(w) ⊆ at(w ′).

We define the notion ϕ is true in world w (usually written w  ϕ)
by defining [[ϕ]]w ∈ {0, 1}
Definition of [[ϕ]]w ∈ {0, 1}, by induction on ϕ:

• (atom) if ϕ is atomic, [[ϕ]]w = 1 iff ϕ ∈ at(w).

• (connective) for ϕ = c(ϕ1, . . . , ϕn), [[ϕ]]w = 1 iff for each
w ′ ≥ w , tc([[ϕ1]]w ′ , . . . , [[ϕn]]w ′) = 1 where tc is the truth
table of c .

Γ |= ψ := for each Kripke model and each world w , if [[ϕ]]w = 1 for
each ϕ in Γ, then [[ψ]]w = 1.
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Kripke semantics for the intuitionistic rules

Theorem Γ ` ϕ if and only if Γ |= ϕ
Proof. Soundness (⇒) is by induction on the deduction of Γ ` ϕ.

For completeness we need to construct a special Kripke model that
“corresponds to the deduction system”.

• In the literature, the completeness of Kripke semantics is
proved using prime theories.

• A theory is prime if it satisfies the disjunction property: if
Γ ` A ∨ B, then Γ ` A or Γ ` B.

• We may not have ∨ in our set of connective, and we may
have others that “behave ∨-like”’,

• So we need to pass by the disjunction property.
• (But we can generalize the disjunction property to arbitrary
n-ary intuitionistic connectives.)

• We consider pairs (Γ, ψ) where Γ is a ψ-maximal theory, a
maximal theory that does not prove ψ.
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A generalised disjunction property

We say that the n-ary connective c is i , j-splitting in case the truth
table for c has the following shape

p1 . . . pi . . . pj . . . pn c(p1, . . . , pn)
− . . . 0 . . . 0 . . . − 0
...

...
...

...
...

...
...

...
− . . . 0 . . . 0 . . . − 0

In terms of tc :

tc(p1, . . . , pi−1, 0, pi+1, . . . , pj−1, 0, pj+1, . . . , pn) = 0

for all p1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn ∈ {0, 1}.

Lemma Let c be an i , j-splitting connective and suppose
` c(A1, . . . ,An). Then ` Ai or ` Aj .
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Examples of connectives with a splitting property

p q r most(p, q, r) p→q/r
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 1 1
1 1 1 1 1

• most is i , j-splitting for every i , j :
• if ` most(A1,A2,A3), then ` Ai or ` Aj , for any pair i 6= j .

• if-then-else is 1, 3-splitting and 2, 3-splitting (but not
1, 2-splitting):
• if ` A→B/C , then ` A or ` C and also ` B or ` C .
• if ` A→B/C , then not ` A or ` B
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Substituting a deduction in another

Lemma: If Γ ` ϕ and ∆, ϕ ` ψ, then Γ,∆ ` ψ

If Σ is a deduction of Γ ` ϕ and Π is a deduction of ∆, ϕ ` ψ,
then we have the following deduction of Γ,∆ ` ψ:

····
Σ

Γ ` ϕ . . .

····
Σ

Γ ` ϕ
····

Π

∆ ` ψ
In Π, every application of an (axiom) rule at a leaf, deriving
∆′ ` ϕ for some ∆′ ⊇ ∆ is replaced by a copy of a deduction Σ,
which is also a deduction of ∆′, Γ ` ϕ.
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Cuts in intuitionistic logic

An intuitionistic direct cut is a pattern of the following form, where
Φ = c(A1, . . . ,An). Remember these rules arise from rows in the
truth table tc :

p1 . . . pn c(p1, . . . , pn)
a1 . . . an 0
b1 . . . bn 1

. . .

····
Σj

Γ ` Aj . . . . . .

····
Σi

Γ,Ai ` Φ . . .
in

Γ ` Φ . . .

····
Πk

Γ ` Ak . . . . . .

····
Π`

Γ,A` ` D . . .
el

Γ ` D

• bj = 1 for Aj and bi = 0 for Ai

• ak = 1 for Ak and a` = 0 for A`
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Eliminating a direct cut (I)

The elimination of a direct cut is defined by replacing the
deduction pattern by another one. If ` = j (for some `, j), replace

. . .

····
Σj

Γ ` Aj . . . . . .

····
Σi

Γ,Ai ` Φ . . .

Γ ` Φ . . .

····
Πk

Γ ` Ak . . . . . .

····
Π`

Γ,A` ` D . . .

Γ ` D

by

····
Σj

Γ ` Aj . . .

····
Σj

Γ ` Aj
····

Π`

Γ ` D
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Eliminating a direct cut (II)

If k = i (for some k , i), replace

. . .

····
Σj

Γ ` Aj . . . . . .

····
Σi

Γ,Ai ` Φ . . .

Γ ` Φ . . .

····
Πk

Γ ` Ak . . . . . .

····
Π`

Γ,A` ` D . . .

Γ ` D

by

····
Πk

Γ ` Ai . . .

····
Πk

Γ ` Ai····
Σi

Γ ` Φ . . .

····
Πk

Γ ` Ai . . . . . .

····
Π`

Γ,A` ` D . . .

Γ ` D
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Cuts for if-then-else (I)

The cut-elimination rules for if-then-else are the following.

(then-then)

Γ ` A

····
Σ

Γ ` B
in

Γ ` A→B/C Γ ` A
el

Γ ` B

7→
····

Σ

Γ ` B

(else-then)

····
Σ

Γ,A ` A→B/C Γ ` C
in

Γ ` A→B/C

····
Π

Γ ` A
el

Γ ` B

7→

····
Π

Γ ` A . . .

····
Π

Γ ` A····
Σ

Γ ` A→B/C

····
Π

Γ ` A
el

Γ ` B
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Cuts for if-then-else (II)

(then-else)
····

Σ

Γ ` A Γ ` B
in

Γ ` A→B/C

····
Π

Γ,A ` D Γ,C ` D
el

Γ ` D

7→

····
Σ

Γ ` A . . .

····
Σ

Γ ` A····
Π

Γ ` D

(else-else)

Γ,A ` A→B/C

····
Σ

Γ ` C
in

Γ ` A→B/C Γ,A ` D

····
Π

Γ,C ` D
el

Γ ` D

7→

····
Σ

Γ ` C . . .

····
Σ

Γ ` C····
Π

Γ ` D
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Curry-Howard proofs-as-terms

We define rules for the judgment Γ ` t : A, where

• A is a formula,

• Γ is a set of declarations {x1 : A1, . . . , xm : Am}, where the Ai

are formulas and the xi are term-variables,

• t is a proof-term.

For a connective c ∈ C of arity n, we have

• an introduction term ι(t1, . . . , tn),

• an elimination term ε(t0, t1, . . . , tn),

where the ti are again proof-terms or of the shape λx .t ′, where x
is a term-variable and t ′ is a proof-term.
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The calculus λif-then-else

Definition We define the calculus λif-then-else as a calculus for
terms and reductions for the if-then-else logic (Γ omitted):

` t0 : A→B/C ` a : A
then-el

` ε1(t0, a) : B

` t0 : A→B/C x : A ` t : D y : C ` q : D
else-el

` ε2(t0, λx .t, λy .q) : D

` a : A ` b : B
then-in

` ι1(a, b) : A→B/C

x : A ` t : A→B/C ` c : C
else-in

` ι2(λx .t, c) : A→B/C

The reduction rules are

ε1(ι1(a, b), a′) −→ b
ε1(ι2(λx .t, c), a) −→ ε1(t[x := a], a)
ε2(ι1(a, b), λx .t, λy .q) −→ t[x := a]
ε2(ι2(λx .t, c), λz .d , λy .q) −→ q[y := c]
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Strong Normalization for λif-then-else

We prove Strong Normalization for the reductions in λif-then-else
by adapting the saturated sets method.

But . . . what we would really want is that proof-terms in normal
form have the subformula property: if t : A, then the type of a
sub-term of t is a sub-type of A.

Then we can derive

• consistency of the logic

• decidability of the logic

• and thereby a (simple?) decision procedure for full IPC.

We need to add permuting reduction rules

ε1(ε2(t0, λx .t, λy .q), e) −→ ε2(t0, λx .ε1(t, e), λy .ε1(q, e))

ε2(ε2(t0, λx .t, λy .q), λv .r , λz .s) −→ ε2(t0, λx .ε2(t, λv .r , λz .s), λy .ε2(q, λv .r , λz .s))
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Conclusions, Further work, Related work

Conclusions

• Simple way to construct deduction system for new
connectives, intuitionistically and classically

• Study connectives “in isolation”. (Without defining them.)
• Generic Kripke semantics

Some open questions/ further work:

• Constructive proof of the completeness of Kripke semantics
• Meaning of the new connectives as data types
• General definition of classical cut-elimination
• Relation with other term calculi for classical logic: subtraction

logic, λµ (Parigot), λ̄µµ̃ (Curien, Herbelin).
• SN for λif-then-else with permuting cuts

Related work:

• Jan von Plato and Sara Negri
• Peter Schroeder-Heister
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