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Introduction

Cantor’s Set Theory with full Comprehension ({x | A(x)} is a set for
any formula A) is inconsistent.

This made Foundational Theories of only sets almost a taboo.

Few exceptions: Quine’s NF and the Theory of Hyperuniverses
[Forti-Honsell] restrict the class of formulæ in the Comprehension
Principle, and preserve extensionality.

A di↵erent approach [Fitch-Prawitz]: full comprehension, but restrict
the shape of deductions to normal(izable) deductions.

FP theory is quite powerful: we give a Fixed Point Theorem,
whereby one can show that all recursive functions are definable.

We show how to encode the highly unorthodox side condition of FP
in a Logical Framework using locked types.

We provide a connection between FP and Hyperuniverses: the
strongly extensional quotient of the coalgebra of closed terms of FP
satisfies the abstraction principle for Generalized Positive Formulæ.
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The Theory of Fitch-Prawitz (FP)

Terms t ::= x | �x .A
Formulæ A ::= ? | ¬A | A ^ A | A _ A | A! A | 8x .A | 9x .A | t 2 u ,

where ¬A is an abbreviation for A!?, and �x .A denotes {x | A}.

Some rules (classical version)
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Deductions in FP

Standard deductions are called quasi-deductions in FP.

Maximum formula in a deduction: a formula that is both the
consequence of an application of a I-rule or of the ?-rule, and
(major) premiss of an application of the corresponding E-rule.

A deduction in FP is a quasi-deduction with no maximum formulæ,
i.e. a normal proof.

Considering simply proofs which do not derive ? would lead to
complications, because subproofs with conclusion ? are necessary.

Theorem

Normal proofs cannot derive ?, hence FP is consistent.
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FP: pros and cons

The ?)-rule is classical negation and it encompasses the double

negation rule ¬¬A
A , and the rule ex falso sequitur quodlibet ?

A .

Full elimination rules are not admissible. E.g. Modus Ponens cannot
be applied näıvely.

The constraint of considering quasi-deductions to be legal only if
already in normal form can be weakened to allow for normalizable
quasi-derivations.

Scotus rule ex absurdis sequitur quodlibet A ¬A
? is not

admissible. But Aristotle’s non-contradiction principle fails:
`FP A ^ ¬A. Thus FP is paraconsistent.
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The taming of Russell’s Paradox

Russell’s Paradox. Let t
�
=�x .(x 62 x), where t 62 t

�
=(t 2 t !?).

t 2 t(1)

t 62 t t 2 t(1)

?
t 62 t
t 2 t

t 2 t(1)

t 62 t t 2 t(1)

?
t 62 t

?

`FP (t 2 t) ^ (t 62 t) (failure of Aristotle’s Principle of
non-contradiction).

But 6`FP ?.
Contraction rule is used.

Näıve Set Theory without contraction is consistent [Grishin82]. This
amounts to a Set Theory with Girard’s Linear Logic without
exponentials.

Minimal logic is already inconsistent because of contraction.
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Equality and Extensionality

Leibniz Equality t1 = t2
�
= 8x . t1 2 x $ t2 2 x .

Extensionality Equality t1 ' t2
�
= 8x . x 2 t1 $ x 2 t2 .

`FP t1 ' t2 ! t1 = t2.

The converse implication amounts to the
Extensionality Axiom t1 = t2 ! t1 ' t2.

[Grishin82]: adding Extensionality Axiom, contraction rule is
admissible.

FP + Ext `FP ?.
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Developing Mathematics in FP

Recursive definitions in FP as in functional programming.

Fixed Point Theorem: Given a formula A with free variables
x , z1, . . . , zn, n > 0, there exists u s.t.

`FP ~z 2 u  ! A[u/x ] .

Numerals: Let ANat
�
= z = 0 _ 9y . (y 2 x ^ z =< S , y >) .

Then there exists a term Nat s.t.

`FP z 2 Nat  ! (z = 0 _ 9y . (y 2 Nat ^ z =< S , y >)) .

Factorial: Let
AFact

�
= ((z1 = 0 ^ z2 = 1) _ 9y1, y2. (z1 = y1 + 1 ^ hy1, y2i 2

x ^ z2 = y2 ⇥ z1) .
Then there exists a term Fact s.t.

`FP hz1, z2i 2 Fact  !
((z1 = 0 ^ z2 = 1) _ 9y1, y2. (z1 = y1 + 1 ^ hy1, y2i 2
Fact ^ z2 = y2 ⇥ z1)) .

FP is a universal model of computation.
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FP in Type Theory based on Logical Frameworks

Problem: capture the side-condition of normal deductions.

In [Honsell-Liquori-Scagnetto2016] FP is encoded in LLFP .

LLFP extends LF with the lock constructor for building objects LP
N,�[M]

of type LP
N,�[⇢]. Locks allow to factor out specific constraints.

An unlock destructor, UP
N,�[M], and an elimination rule

(O · Top · Unlock), eliminates the lock-type constructor, under the
condition that a specific predicate P is verified, possibly externally, on a
judgement:

� `⌃ M : ⇢ � `⌃ N : �

� `⌃ LP
N,�[M] : LP

N,�[⇢]
(O·Lock)

� `⌃ M : LP
N,�[⇢] P(� `⌃ N : �)

� `⌃ UP
N,�[M] : ⇢

(O·Top·Unlock)

Equality rule for lock types (lock reduction): UP
N,�[LP

N,�[M]]!L M.

Capitalizing on the monadic nature of the lock constructor, one can use
locked terms without necessarily establishing the predicate, provided an
outermost lock is present.
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Encoding FP in LLFP

In our encoding, the global normalization constraint is enforced locally by
specifying a suitable lock on the proof-object:

the obvious predicate to use in the lock-type (i.e., checking that a
proof term is normalizable) would not be well-behaved: free
variables, i.e. assumptions, have to be “sterilized”;

hence, we make a distinction between generic judgements, which
can be assumed, but not used directly, and apodictic judgements,
which are directly involved in proof rules;

in order to make use of generic judgements, one has to downgrade
them to apodictic ones, by a suitable coercion function.
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The encoding of FP in LLFP

The signature is the following:

o : Type ◆ : Type

T : o -> Type � : ⇧A:o. (V(A) -> T(A))

V : o -> Type �
intro

: ⇧A:◆ ->o.⇧x:◆.T(A x) -> T(✏ x (lam A))

lam : (◆ -> o)-> ◆ �
elim

: ⇧A:◆ ->o.⇧x:◆.T(✏ x (lam A))->T(A x)

✏ : ◆ -> ◆ -> o �
intro

: ⇧A,B:o.(V(A) -> T(B)) -> (T(A�B))

� : o -> o -> o �
elim

: ⇧A,B:o.⇧x:T(A).⇧y:T(A�B) -> LFitch

hx,yi,T(A)⇥T(A�B)[T(B)]

where:

o is the type of propositions,

� and the “membership” predicate ✏ are the syntactic constructors
for propositions,

lam is the “abstraction” operator for building “sets”,

T is the apodictic judgement,

V is the generic judgement,

� is the coercion function,

hx, yi denotes the encoding of pairs.
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Adequacy

In the type of the constructor �
elim

:

�
elim

: ⇧A,B:o.⇧x:T(A).⇧y:T(A�B) -> LFitch

hx,yi,T(A)⇥T(A�B)[T(B)]

the predicate Fitch(� `⌃FPST hx, yi ( T(A)⇥T(A � B)) holds i↵:
x and y have skeletons in ⇤⌃FPST , i.e. can be expressed as instantiations
of contexts such that all the holes of which have

either type o

or are guarded by a �, and hence have type V(A),

and, moreover, the proof derived by combining the skeletons of x and y is
normalizable in the natural sense.

Theorem (Adequacy for Fitch-Prawitz Naive Set Theory)

If A1, . . . ,An are the atomic formulas occurring in B1, . . . ,Bm,A, then
B1 . . .Bm `FPST A i↵ there exists a normalizable M such that
A

1

:o, . . . , A
n

:o, x
1

:V(B
1

), . . . , x
m

:V(B
m

) `⌃FPST M( T(A) (where A, and B

i

represent the encodings of, respectively, A and Bi in CLLFP , for
1  i  m).
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The Theory of Hyperuniverses TH

The naive Comprehension Principle can be approximated, by restricting
the class of admissible formulæ.

Generalized Positive Comprehension Scheme (GPC)
[Forti-Hinnion89,Forti-Honsell89]

{x | A} is a set, if A is a Generalized Positive Formula ,

where Generalized Positive Formulæ (GPF) are the smallest class of
formulæ

including u 2 t, u = t;

closed under the logical connectives ^,_;
closed under the quantifiers 8x , 9x , 8x 2 y , 9x 2 y , where 8x 2 y .A
(9x 2 y .A) is an abbreviation for 8x .(x 2 y ! A) (9x .(x 2 y ! A));

closed under the formula 8x .(B ! A), where A is a generalized
positive formula and B is any formula such that Fv(B) ✓ {x}. Akin
to restricted quantification.

The Theory of Hyperuniverses TH, namely GPC + Extensionality, is
consistent [Forti-Honsell89].
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Set-theoretic Structures and P( )-coalgebras

A set-theoretic structure (X ,2) is a first-order structure with a
predicate 2 on X ⇥ X .

Set-theoretic structures are coalgebras for the powerset functor P( ):

fX : X �! P(X ) fX (x) = {y | y 2 x} .

A P( )-coalgebra (X , fX ) is extensional if fX is injective.

A P( )-coalgebra (X , fX ) is strongly extensional if the unique
coalgebra morphism from (X , fX ) into the final coalgebra is injective.
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The Extensional Quotient of the Fitch-Prawitz Coalgebra

Fitch-Prawitz Coalgebra fT 0 : T 0 �! P(T 0)

fT 0(t) = {u | `FP u 2 t} .

Bisimilarity can be defined in FP:

⇠ �
= {ht, t 0i | 9R . (ht, t 0i 2 R ^ ABis[R/x ])} ,

where ABis
�
= 8t, t 0 (ht, t 0i 2 x �!

8u(u 2 t �! 9u0(u0 2 t 0 ^ hu, u0i 2 x)) ^
8u0(u0 2 t 0 �! 9u.(u 2 t ^ hu, u0i 2 x))) .

⇠-quotient of the FP-coalgebra: for any t 2 T 0, t 2M, where

t
�
= {t 0 | `FP t ⇠ t 0} .

P( )-coalgebra on M, fM : M! P(M):

fM(t) = {s | `FP s 2 t} .
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Strong Extensionality of M in FP+

We work in FP+, i.e. FP plus

(Bounded-!)

A[w/x ] for all closed w s.t.
B[w/x ], Fv(B) ✓ {x}
8x .(B[w/x ]! A)

Proposition

The quotient M is extensional, i.e. for all t, t 0 2M,

t = t 0 () fM(t) = fM(t 0) .

Moreover, M is strongly extensional.
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Relating FP to TH

M satisfies the Generalized Positive Comprehension Scheme, namely it
is a hyperuniverse.

Definition

Given a A formula with constants in M, we define bA corresponding
formula in FP+:
A

�
= u 2 t =) bA �

= 9u0.u0 ⇠ u ^ u0 2 t A
�
=¬A1 =) bA �

=¬ bA1

A
�
= u = t =) bA �

= u ⇠ t A
�
= 8x .A1 =) bA �

= 8x . bA1

. . .

Theorem (M satisfies GPC)

For any formula A in GPF with free variable x ,

M |= t 2 v () M |= A[t/x ] , where v
�
= {x | bA}.
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Open Questions

Alternative Inner Models: M satisfies strong extensionality, but
there are inner models which have more than one selfsingleton and
hence do not satisfy stong extensionality.

The ubiquitous hyperuniverse N!(;):
N!(;) is Cantor-1 space;
N!(;) is the unique solution of the metric equation X

⇠= Pcl(X 1
2
);

N!(;) is the space of maximal points of the solution in Plotkin’s
category of SFP domains of X ⇠= PP(X?)�? 1
[Alessi-Baldan-Honsell03]
N!(;) is the free Stone modal Algebra over 0 generators.
Conjecture: N!(;) is the extensional quotient of Fitch-Prawitz
coalgebra.
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