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1 : Faculty of Technical Sciences, University of Novi Sad
2 : Mathematical Institute of SASA

TYPES 2016.



Towards probabilistic reasoning about lambda terms with intersection types

The Idea

Lambda Calculus with Intersection
Types

x : σ x : τ
(∩)

x : σ ∩ τ
(→I )

λx .x : (σ ∩ τ)→ (σ ∩ τ)

Probabilistic Logic

(P≤ 1
3
p ∧ P≤ 1

4
q)⇒ (P≤ 1

4
(p ∧ q))

p ∧ P≥ 1
2
q

P≥ 1
3
P≥ 1

2
p



Towards probabilistic reasoning about lambda terms with intersection types

The Idea

Lambda Calculus with Intersection
Types

x : σ x : τ
(∩)

x : σ ∩ τ
(→I )

λx .x : (σ ∩ τ)→ (σ ∩ τ)

Probabilistic Logic

(P≤ 1
3
p ∧ P≤ 1

4
q)⇒ (P≤ 1

4
(p ∧ q))

p ∧ P≥ 1
2
q

P≥ 1
3
P≥ 1

2
p



Towards probabilistic reasoning about lambda terms with intersection types

The Idea

Lambda Calculus with Intersection
Types

x : σ x : τ
(∩)

x : σ ∩ τ
(→I )

λx .x : (σ ∩ τ)→ (σ ∩ τ)

Probabilistic Logic

(P≤ 1
3
p ∧ P≤ 1

4
q)⇒ (P≤ 1

4
(p ∧ q))

p ∧ P≥ 1
2
q

P≥ 1
3
P≥ 1

2
p



Towards probabilistic reasoning about lambda terms with intersection types

The Idea

Lambda Calculus with Intersection
Types

x : σ x : τ
(∩)

x : σ ∩ τ
(→I )

λx .x : (σ ∩ τ)→ (σ ∩ τ)

Probabilistic Logic

(P≤ 1
3
p ∧ P≤ 1

4
q)⇒ (P≤ 1

4
(p ∧ q))

p ∧ P≥ 1
2
q

P≥ 1
3
P≥ 1

2
p



Towards probabilistic reasoning about lambda terms with intersection types

The Idea

Lambda Calculus with Intersection
Types

x : σ x : τ
(∩)

x : σ ∩ τ
(→I )

λx .x : (σ ∩ τ)→ (σ ∩ τ)

Probabilistic Logic

(P≤ 1
3
p ∧ P≤ 1

4
q)⇒ (P≤ 1

4
(p ∧ q))

p ∧ P≥ 1
2
q

P≥ 1
3
P≥ 1

2
p



Towards probabilistic reasoning about lambda terms with intersection types

The Idea

Lambda Calculus with Intersection
Types

x : σ x : τ
(∩)

x : σ ∩ τ
(→I )

λx .x : (σ ∩ τ)→ (σ ∩ τ)

Probabilistic Logic

(P≤ 1
3
p ∧ P≤ 1

4
q)⇒ (P≤ 1

4
(p ∧ q))

p ∧ P≥ 1
2
q

P≥ 1
3
P≥ 1

2
p



Towards probabilistic reasoning about lambda terms with intersection types

Why Lambda Calculus with Intersection Types?

With the notion of filter lambda model, completeness of the type assignment
was proved:

Theorem (Completeness)

Γ ` M : σ ⇔ Γ |= M : σ.
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Towards probabilistic reasoning about lambda terms with intersection types

Syntax and Semantics of PΛ∩

Syntax of PΛ∩

Let S = [0, 1] ∩Q. The alphabet of the logic PΛ∩ consists of

all symbols needed to define lambda terms with intersection types,

the classical propositional connectives ¬ and ∧,

the list of probability operators P≥s , for every s ∈ S.

Remark: Using P≥sα we can define other inequalities:

P<sα stands for ¬P≥sα,
P≤sα stands for P≥1−s¬α,
P>sα stands for ¬P≤sα,
P=sα stands for P≥sα ∧ ¬P>sα.
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Syntax and Semantics of PΛ∩

Basic and Probabilistic Formulas

Basic formulas:
ForB α ::= M : σ | α ∧ α | ¬α.

Example:

x : σ, λx .xy : σ → τ

(x : σ) ∧ (y : σ ∩ τ), (x : σ ∧ y : σ → τ)⇒ yx : τ

Probabilistic formulas:

ForP φ ::= P≥sα | φ ∧ φ | ¬φ.

Example:

P= 1
3
x : σ, P≥ 1

4
(λx .xy : σ → τ)

P≤0.2(x : σ) ∨ P≥0.8(y : σ ∩ τ), P=1(x : σ ∧ y : σ → τ)⇒ P=1(yx : τ)
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Syntax and Semantics of PΛ∩

No mixing and no iterations

The next two formulas are NOT the FORMULAS of our logic:

(x : σ) ∧ P≥ 1
2
(y : τ1 ∩ τ2)

P≥ 1
3
P≥ 1

2
(xy : σ)
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Syntax and Semantics of PΛ∩

Kripke-style Semantics of PΛ∩

Definition (PΛ∩-structure)

A PΛ∩-structure is a tuple M = 〈W , ρ, ξ,H, µ〉, where:

(i) W is a nonempty set of worlds, where each world is one lambda model,
i.e. for every w ∈W , w = 〈L(w), ·w , [[ ]]w 〉;

(ii) ρ : VΛ × {w} −→ L(w), w ∈W ;

(iii) ξ : VType × {w} −→ P(L(w)), w ∈W ;

(iv) H is an algebra of subsets of W , i.e. H ⊆ P(W ) such that
- W ∈ H,
- if U,V ∈ H, then W \ U ∈ H and U ∪ V ∈ H;

(v) µ is a finitely additive probability measure defined on H, i.e.
- µ(W ) = 1,
- if U ∩ V = ∅, then µ(U ∪ V ) = µ(U) + µ(V ),

for all U,V ∈ H.
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Syntax and Semantics of PΛ∩

Satisfiability of a formula

We say that a lambda statement M : σ holds in a world w , denoted by
w |= M : σ, iff

[[M]]wρ ∈ [[σ]]wξ .

Definition (Satisfiability relation)

The satisfiability relation |=⊆ PΛ∩Meas × ForPΛ∩ is defined in the following way:

- M |= M : σ iff w |= M : σ, for all w ∈W ;

- M |= P≥sα iff µ([α]) ≥ s;

- M |= ¬A iff it is not the case that M |= A;

- M |= A1 ∧ A2 iff M |= A1 and M |= A2.
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Syntax and Semantics of PΛ∩

Example

Example

Consider a model with three worlds, i.e., let M = 〈W , ρ, ξ,H, µ〉, where:

W = {w1,w2,w3},
H = P(W ),

µ(wi ) = 1
3
, i = 1, 2, 3,

and ρ and ξ are defined such that M |= P= 1
3
(x : σ → τ) and M |= P= 2

3
(y : σ).

Without loss of generality, suppose that w1 |= x : σ → τ . We know that y : σ
holds in two worlds, so there are three different possibilities:
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y : σ holds in w2 and w3:
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y : σ holds in w1 and w2:
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y : σ holds in w1 and w3:

The following implication holds:

[P= 1
3
(x : σ → τ) ∧ P= 2

3
(y : σ)]⇒ [P=0(xy : τ) ∨ P= 1

3
(xy : τ)].
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y : σ holds in w1 and w3:

The following implication holds:

[P= 1
3
(x : σ → τ) ∧ P= 2

3
(y : σ)]⇒ [P=0(xy : τ) ∨ P= 1

3
(xy : τ)].
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Axiomatization AxPΛ∩

Axiom schemes

(1) all instances of the classical propositional tautologies, (atoms are
λ-statements or any PΛ∩-formulas),

(2) P≥0α,

(3) P≤rα⇒ P<sα, s > r ,

(4) P<sα⇒ P≤sα,

(5) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β))⇒ P≥min{1,r+s}(α ∨ β),

(6) (P≤rα ∧ P<sβ)⇒ P<r+s(α ∨ β), r + s ≤ 1,

(7) P≥1(α⇒ β)⇒ (P≥sα⇒ P≥sβ).
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Axiomatization AxPΛ∩

Inference Rules I
M : σ → τ N : σ (→E )

MN : τ

[x : σ]

...
M : τ (→I )

λx .M : σ → τ

M : σ ∩ τ (∩E )
M : σ

M : σ ∩ τ (∩E )
M : τ

M : σ M : τ (∩I )
M : σ ∩ τ

(ω)
M : ω

M : σ σ ≤ τ
(≤)

M : τ

Inference Rules II

(1) From A1 and A1 ⇒ A2 infer A2,

(2) from α infer P≥1α,

(3) from the set of premises

{φ⇒ P≥s− 1
k
α | k ≥ 1

s
}

infer φ⇒ P≥sα.
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Soundness and Strong Completeness

Soundness and Strong Completeness

Theorem (Soundness)

The axiomatic system AxPΛ∩ is sound with respect to the class of
PΛ∩Meas-models.

Strong Completeness
We need a few auxiliary lemmas in order to prove the strong completeness
theorem:

Theorem

Every consistent set can be extended to a maximal consistent set.
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Soundness and Strong Completeness

Construction of the canonical model

Definition

If T ? is the maximally consistent set of formulas, then a tuple
MT? = 〈W , ρ, ξ,H, µ〉 is defined:

W = {w = 〈F(w), ·w , [[ ]]w 〉 | w |= CnB(T )} contains all filter lambda
models that satisfy the set CnB(T ),

ρw (x) = {σ ∈ Type | w |= x : σ},
ξw (σ) = {d ∈ F(w) | σ ∈ d},
H = {[α] | α ∈ ForB}, where [α] = {w ∈W | w |= α},
µ([α]) = sup{s | P≥sα ∈ T ?}.

Theorem (Strong completeness)

Every consistent set of formulas T is PΛ∩Meas-satisfiable.
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ρw (x) = {σ ∈ Type | w |= x : σ},
ξw (σ) = {d ∈ F(w) | σ ∈ d},
H = {[α] | α ∈ ForB}, where [α] = {w ∈W | w |= α},
µ([α]) = sup{s | P≥sα ∈ T ?}.

Theorem (Strong completeness)

Every consistent set of formulas T is PΛ∩Meas-satisfiable.
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Further Work

- Intuitionistic instead of classical propositional calculus

- Restriction to the finite case
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