# Towards probabilistic reasoning about lambda terms with intersection types

Silvia Ghilezan<sup>1</sup>, Jelena Ivetić<sup>1</sup>, Zoran Ognjanović<sup>2</sup>, Nenad Savić<sup>1</sup>

 $\label{eq:action} \begin{array}{l} 1: \mbox{Faculty of Technical Sciences, University of Novi Sad} \\ 2: \mbox{Mathematical Institute of SASA} \end{array}$ 

TYPES 2016.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Lambda Calculus with Intersection Types

# Lambda Calculus with Intersection Types

$$\frac{\frac{x:\sigma \qquad x:\tau}{x:\sigma\cap\tau}\left(\cap\right)}{\frac{\lambda x.x:(\sigma\cap\tau)\to(\sigma\cap\tau)}{\lambda x.x:(\sigma\cap\tau)\to(\sigma\cap\tau)}\left(\to\right)}$$

Lambda Calculus with Intersection Types

Probabilistic Logic

$$\frac{\frac{x:\sigma \qquad x:\tau}{x:\sigma\cap\tau}\left(\cap\right)}{\frac{x:\sigma\cap\tau}{\lambda x.x:(\sigma\cap\tau)\to(\sigma\cap\tau)}\left(\to_{I}\right)}$$

Lambda Calculus with Intersection Types

$$\frac{\frac{x:\sigma \qquad x:\tau}{x:\sigma\cap\tau}\left(\cap\right)}{\frac{x:\sigma\cap\tau}{\lambda x.x:(\sigma\cap\tau)\to(\sigma\cap\tau)}\left(\to_{I}\right)}$$

Probabilistic Logic

$$(P_{\leq rac{1}{3}}p \wedge P_{\leq rac{1}{4}}q) \Rightarrow (P_{\leq rac{1}{4}}(p \wedge q))$$

Lambda Calculus with Intersection Types

$$\frac{\frac{x:\sigma \qquad x:\tau}{x:\sigma\cap\tau}\left(\cap\right)}{\frac{x:\sigma\cap\tau}{\lambda x.x:(\sigma\cap\tau)\to(\sigma\cap\tau)}\left(\to_{I}\right)}$$

Probabilistic Logic

$$(P_{\leq \frac{1}{3}}p \wedge P_{\leq \frac{1}{4}}q) \Rightarrow (P_{\leq \frac{1}{4}}(p \wedge q))$$

• 
$$p \wedge P_{\geq \frac{1}{2}}q$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Lambda Calculus with Intersection Types

$$\frac{\frac{x:\sigma \qquad x:\tau}{x:\sigma\cap\tau}\left(\cap\right)}{\frac{x:\sigma\cap\tau}{\lambda x.x:(\sigma\cap\tau)\to(\sigma\cap\tau)}\left(\to_{I}\right)}$$

Probabilistic Logic

$$(P_{\leq \frac{1}{3}}p \wedge P_{\leq \frac{1}{4}}q) \Rightarrow (P_{\leq \frac{1}{4}}(p \wedge q))$$

• 
$$p \wedge P_{\geq \frac{1}{2}}q$$
  
•  $P_{\geq \frac{1}{3}}P_{\geq \frac{1}{2}}p$ 

# Why Lambda Calculus with Intersection Types?

#### Why Lambda Calculus with Intersection Types?

With the notion of filter lambda model, completeness of the type assignment was proved:

```
Theorem (Completeness)
```

 $\Gamma \vdash M : \sigma \Leftrightarrow \Gamma \models M : \sigma.$ 

Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $P\Lambda^{\bigcap}$ 

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

# Syntax of $P\Lambda^{\cap}$

# Syntax of $P\Lambda^{\cap}$

Let  $S = [0,1] \cap \mathbb{Q}$ . The alphabet of the logic  $\mathsf{P}\Lambda^{\cap}$  consists of

• all symbols needed to define lambda terms with intersection types,

- $\bullet$  the classical propositional connectives  $\neg$  and  $\wedge,$
- the list of probability operators  $P_{\geq s}$ , for every  $s \in S$ .

# Syntax of $P\Lambda^{\cap}$

Let  $S = [0, 1] \cap \mathbb{Q}$ . The *alphabet* of the logic  $P\Lambda^{\cap}$  consists of

- all symbols needed to define lambda terms with intersection types,
- $\bullet$  the classical propositional connectives  $\neg$  and  $\wedge,$
- the list of probability operators  $P_{\geq s}$ , for every  $s \in S$ .

**Remark**: Using  $P_{>s}\alpha$  we can define other inequalities:

$$\begin{array}{ll} P_{s}\alpha & \text{stands for} & \neg P_{\leq s}\alpha, \\ P_{=s}\alpha & \text{stands for} & P_{\geq s}\alpha \wedge \neg P_{>s}\alpha. \end{array}$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

#### Example:

• x : σ

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

#### Example:

•  $x:\sigma$ ,  $\lambda x.xy:\sigma \to \tau$ 

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- $x:\sigma$ ,  $\lambda x.xy:\sigma \to \tau$
- $(x:\sigma) \land (y:\sigma \cap \tau)$

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

- $x:\sigma$ ,  $\lambda x.xy:\sigma \to \tau$
- $(x:\sigma) \land (y:\sigma \cap \tau),$   $(x:\sigma \land y:\sigma \to \tau) \Rightarrow yx:\tau$

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

Example:

• 
$$x:\sigma$$
,  $\lambda x.xy:\sigma \to \tau$   
•  $(x:\sigma) \land (y:\sigma \cap \tau)$ ,  $(x:\sigma \land y:\sigma \to \tau) \Rightarrow yx:\tau$ 

Probabilistic formulas:

$$\mathsf{For}_{\mathsf{P}} \quad \phi ::= \mathsf{P}_{\geq \mathsf{s}} \alpha \mid \phi \land \phi \mid \neg \phi.$$

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

Example:

• 
$$x:\sigma$$
,  $\lambda x.xy:\sigma \to \tau$   
•  $(x:\sigma) \land (y:\sigma \cap \tau)$ ,  $(x:\sigma \land y:\sigma \to \tau) \Rightarrow yx:\tau$ 

Probabilistic formulas:

$$\mathsf{For}_{\mathsf{P}} \quad \phi ::= \mathsf{P}_{\geq \mathsf{s}} \alpha \mid \phi \land \phi \mid \neg \phi.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• 
$$P_{=\frac{1}{3}}x:\sigma$$

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

Example:

• 
$$x:\sigma$$
,  $\lambda x.xy:\sigma \to \tau$   
•  $(x:\sigma) \land (y:\sigma \cap \tau)$ ,  $(x:\sigma \land y:\sigma \to \tau) \Rightarrow yx:\tau$ 

Probabilistic formulas:

$$\mathsf{For}_{\mathsf{P}} \quad \phi ::= \mathsf{P}_{\geq \mathsf{s}} \alpha \mid \phi \land \phi \mid \neg \phi.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• 
$$P_{=\frac{1}{3}}x:\sigma$$
,  $P_{\geq\frac{1}{4}}(\lambda x.xy:\sigma \to \tau)$ 

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha.$$

Example:

• 
$$x:\sigma$$
,  $\lambda x.xy:\sigma \to \tau$   
•  $(x:\sigma) \land (y:\sigma \cap \tau)$ ,  $(x:\sigma \land y:\sigma \to \tau) \Rightarrow yx:\tau$ 

Probabilistic formulas:

$$\mathsf{For}_{\mathsf{P}} \quad \phi ::= \mathsf{P}_{\geq \mathsf{s}} \alpha \mid \phi \land \phi \mid \neg \phi.$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• 
$$P_{=\frac{1}{3}}x:\sigma$$
,  $P_{\geq\frac{1}{4}}(\lambda x.xy:\sigma \to \tau)$   
•  $P_{\leq 0.2}(x:\sigma) \lor P_{\geq 0.8}(y:\sigma \cap \tau)$ 

#### Basic formulas:

For<sub>B</sub> 
$$\alpha ::= M : \sigma \mid \alpha \land \alpha \mid \neg \alpha$$
.

Example:

• 
$$x:\sigma$$
,  $\lambda x.xy:\sigma \to \tau$   
•  $(x:\sigma) \land (y:\sigma \cap \tau)$ ,  $(x:\sigma \land y:\sigma \to \tau) \Rightarrow yx:\tau$ 

Probabilistic formulas:

For<sub>P</sub> 
$$\phi ::= P_{\geq s} \alpha \mid \phi \land \phi \mid \neg \phi.$$

Example:

• 
$$P_{=\frac{1}{3}}x:\sigma,$$
  $P_{\geq\frac{1}{4}}(\lambda x.xy:\sigma \to \tau)$   
•  $P_{\leq 0.2}(x:\sigma) \lor P_{\geq 0.8}(y:\sigma \cap \tau),$   $P_{=1}(x:\sigma \land y:\sigma \to \tau) \Rightarrow P_{=1}(yx:\tau)$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

# No mixing and no iterations

#### No mixing and no iterations

The next two formulas are NOT the FORMULAS of our logic:

#### No mixing and no iterations

The next two formulas are NOT the FORMULAS of our logic:

• 
$$(x:\sigma) \wedge P_{\geq \frac{1}{2}}(y:\tau_1 \cap \tau_2)$$

#### No mixing and no iterations

The next two formulas are NOT the FORMULAS of our logic:

• 
$$(x:\sigma) \wedge P_{\geq \frac{1}{2}}(y:\tau_1 \cap \tau_2)$$
  
•  $P_{\geq \frac{1}{2}}P_{\geq \frac{1}{2}}(xy:\sigma)$ 

Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $P\Lambda^{\bigcap}$ 

# Kripke-style Semantics of $P\Lambda^{\cap}$

## Kripke-style Semantics of $P\Lambda^{\cap}$

#### Definition ( $P\Lambda^{\cap}$ -structure)

- A P $\Lambda^{\cap}$ -structure is a tuple  $\mathcal{M} = \langle W, \rho, \xi, H, \mu \rangle$ , where:
- (i) W is a nonempty set of worlds, where each world is one lambda model,
   i.e. for every w ∈ W, w = ⟨L(w), ⋅w, [[]]w⟩;

(ii) 
$$\rho: \mathbb{V}_{\Lambda} \times \{w\} \longrightarrow \mathcal{L}(w), w \in W;$$

(iii) 
$$\xi: \mathbb{V}_{\text{Type}} \times \{w\} \longrightarrow \mathcal{P}(\mathcal{L}(w)), w \in W;$$

- (iv) H is an algebra of subsets of W, i.e.  $H \subseteq \mathcal{P}(W)$  such that
  - $W \in H$ ,
  - if  $U, V \in H$ , then  $W \setminus U \in H$  and  $U \cup V \in H$ ;
- (v)  $\mu$  is a finitely additive probability measure defined on H, i.e.
  - $\mu(W) = 1$ , - if  $U \cap V = \emptyset$ , then  $\mu(U \cup V) = \mu(U) + \mu(V)$ , for all  $U, V \in H$ .

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

# Satisfiability of a formula

#### Satisfiability of a formula

We say that a lambda statement  $M : \sigma$  holds in a world w, denoted by  $w \models M : \sigma$ , iff

 $\llbracket M \rrbracket_{\rho}^{w} \in \llbracket \sigma \rrbracket_{\xi}^{w}.$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

#### Satisfiability of a formula

We say that a lambda statement  $M : \sigma$  holds in a world w, denoted by  $w \models M : \sigma$ , iff

 $\llbracket M \rrbracket_{\rho}^{w} \in \llbracket \sigma \rrbracket_{\xi}^{w}.$ 

#### Definition (Satisfiability relation)

The satisfiability relation  $\models \subseteq P\Lambda_{Meas}^{\cap} \times For_{P\Lambda^{\cap}}$  is defined in the following way:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

-  $\mathcal{M} \models M : \sigma$  iff  $w \models M : \sigma$ , for all  $w \in W$ ;

- 
$$\mathcal{M} \models P_{\geq s} \alpha$$
 iff  $\mu([\alpha]) \geq s$ ;

-  $\mathcal{M} \models \neg A$  iff it is not the case that  $\mathcal{M} \models A$ ;

- 
$$\mathcal{M} \models A_1 \land A_2$$
 iff  $\mathcal{M} \models A_1$  and  $\mathcal{M} \models A_2$ .

Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $P\Lambda^{\bigcap}$ 



#### Example

#### Example

Consider a model with three worlds, i.e., let  $\mathcal{M} = \langle W, \rho, \xi, H, \mu \rangle$ , where:

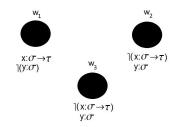
- $W = \{w_1, w_2, w_3\},\$
- $H = \mathcal{P}(W)$ ,
- $\mu(w_i) = \frac{1}{3}, i = 1, 2, 3,$

and  $\rho$  and  $\xi$  are defined such that  $\mathcal{M} \models P_{=\frac{1}{3}}(x : \sigma \to \tau)$  and  $\mathcal{M} \models P_{=\frac{2}{3}}(y : \sigma)$ . Without loss of generality, suppose that  $w_1 \models x : \sigma \to \tau$ . We know that  $y : \sigma$  holds in two worlds, so there are three different possibilities:

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

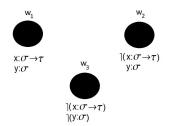
Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $P\Lambda^{\bigcap}$ 

 $y : \sigma$  holds in  $w_2$  and  $w_3$ :



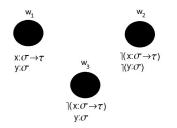
Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $P\Lambda^{\bigcap}$ 

 $y : \sigma$  holds in  $w_1$  and  $w_2$ :



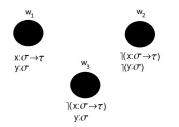
Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $P\Lambda^{\bigcap}$ 

 $y : \sigma$  holds in  $w_1$  and  $w_3$ :



Towards probabilistic reasoning about lambda terms with intersection types Syntax and Semantics of  $\text{PA}^{\frown}$ 

 $y : \sigma$  holds in  $w_1$  and  $w_3$ :



The following implication holds:

$$[P_{=\frac{1}{3}}(x:\sigma\to\tau)\wedge P_{=\frac{2}{3}}(y:\sigma)]\Rightarrow [P_{=0}(xy:\tau)\vee P_{=\frac{1}{3}}(xy:\tau)].$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Towards probabilistic reasoning about lambda terms with intersection types Axiomatization  ${\it Ax}_{P\Lambda \cap}$ 

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

#### **Axiom schemes**

(1) all instances of the classical propositional tautologies, (atoms are  $\lambda$ -statements or any PA<sup>^</sup>-formulas),

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

$$\begin{array}{ll} (2) & P_{\geq 0}\alpha, \\ (3) & P_{\leq r}\alpha \Rightarrow P_{ r, \\ (4) & P_{$$

Inference Rules I  

$$\frac{M: \sigma \to \tau \qquad N: \sigma}{MN: \tau} (\to_E)$$

$$[x:\sigma]$$

$$\frac{M: \tau}{\lambda x.M: \sigma \to \tau} (\to_I)$$

$$\frac{M: \sigma \cap \tau}{M: \sigma} (\cap_E)$$

$$\frac{M: \sigma \qquad M: \tau}{M: \tau} (\cap_E)$$

$$\frac{M: \sigma \qquad M: \tau}{M: \sigma \leftarrow \tau} (\cap_I)$$

$$\frac{M: \sigma \qquad \sigma \leq \tau}{M: \tau} (\leq)$$

### Inference Rules II

- (1) From  $A_1$  and  $A_1 \Rightarrow A_2$  infer  $A_2$ , (2) from  $\alpha$  infer  $P_{\geq 1}\alpha$ ,
- (3) from the set of premises

$$\{\phi \Rightarrow \mathsf{P}_{\geq \mathsf{s}-\frac{1}{k}}\alpha \mid \mathsf{k} \geq \frac{1}{\mathsf{s}}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

infer  $\phi \Rightarrow P_{\geq s}\alpha$ .

# Soundness and Strong Completeness

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

## Soundness and Strong Completeness

Theorem (Soundness)

The axiomatic system  $Ax_{P\Lambda\cap}$  is sound with respect to the class of  $P\Lambda_{Meas}^{\cap}$ -models.

## Soundness and Strong Completeness

Theorem (Soundness)

The axiomatic system  $Ax_{P\Lambda^{\cap}}$  is sound with respect to the class of  $P\Lambda^{\cap}_{Meas}\text{-models}.$ 

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Strong Completeness

## Soundness and Strong Completeness

Theorem (Soundness)

The axiomatic system  $Ax_{P\Lambda^{\cap}}$  is sound with respect to the class of  $P\Lambda^{\cap}_{Meas}\text{-models}.$ 

#### Strong Completeness

We need a few auxiliary lemmas in order to prove the strong completeness theorem:

## Soundness and Strong Completeness

Theorem (Soundness)

The axiomatic system  $Ax_{P\Lambda^{\cap}}$  is sound with respect to the class of  $P\Lambda^{\cap}_{Meas}\text{-models}.$ 

#### Strong Completeness

We need a few auxiliary lemmas in order to prove the strong completeness theorem:

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

#### Theorem

Every consistent set can be extended to a maximal consistent set.

## Construction of the canonical model

### Construction of the canonical model

#### Definition

If  $T^*$  is the maximally consistent set of formulas, then a tuple  $\mathcal{M}_{T^*} = \langle W, \rho, \xi, H, \mu \rangle$  is defined:

W = {w = ⟨𝓕(w), ·w, [[]]w⟩ | w ⊨ Cn<sub>B</sub>(T)} contains all filter lambda models that satisfy the set Cn<sub>B</sub>(T),

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

• 
$$\rho_w(x) = \{ \sigma \in Type \mid w \models x : \sigma \},\$$

• 
$$\xi_w(\sigma) = \{ d \in \mathcal{F}(w) \mid \sigma \in d \}$$

• 
$$H = \{ [\alpha] \mid \alpha \in \mathsf{For}_{\mathsf{B}} \}$$
, where  $[\alpha] = \{ w \in W \mid w \models \alpha \}$ ,

• 
$$\mu([\alpha]) = \sup\{s \mid P_{\geq s} \alpha \in T^*\}.$$

## Construction of the canonical model

#### Definition

If  $T^*$  is the maximally consistent set of formulas, then a tuple  $\mathcal{M}_{T^*} = \langle W, \rho, \xi, H, \mu \rangle$  is defined:

W = {w = ⟨𝓕(w), ⋅w, [[]]w⟩ | w ⊨ Cn<sub>B</sub>(T)} contains all filter lambda models that satisfy the set Cn<sub>B</sub>(T),

• 
$$\rho_w(x) = \{\sigma \in Type \mid w \models x : \sigma\},\$$

• 
$$\xi_w(\sigma) = \{ d \in \mathcal{F}(w) \mid \sigma \in d \}$$

- $H = \{ [\alpha] \mid \alpha \in \mathsf{For}_{\mathsf{B}} \}$ , where  $[\alpha] = \{ w \in W \mid w \models \alpha \}$ ,
- $\mu([\alpha]) = \sup\{s \mid P_{\geq s} \alpha \in T^*\}.$

#### Theorem (Strong completeness)

Every consistent set of formulas T is  $P\Lambda_{Meas}^{\cap}$ -satisfiable.



- Intuitionistic instead of classical propositional calculus



## Further Work

- Intuitionistic instead of classical propositional calculus

- Restriction to the finite case

### References

H. Barendregt, M. Coppo, M. Dezani-Ciancaglini. A filter lambda model and the completeness of type assignment. *The Journal of Symbolic Logic*, 48: 931–940, 1983.

Z. Ognjanović, M. Rašković, Z. Marković. Probability logics. *Zbornik radova, subseries Logic in computer science*, 12 (20), 35–111, Matematički institut, 2009.

S. Ghilezan, S. Likavec. Computational interpretations of logics. *Zbornik radova, special issue Logic in Computer Science 12(20)* 159–215, Matematički institut, 2009.