
A Strongly Normalizing Computation Rule for

Univalence in Higher-Order Propositional Logic

Robin Adams Marc Bezem Thierry Coquand

TYPES 2016, Novi Sad, Serbia
May 26 2016

This talk is a literate Agda �le:
https://www.github.com/radams78/Univalence

https://www.github.com/radams78/Univalence

Introduction

Type Theory Orthoodoxy

To enjoy a good meaning explanation, a type theory should
enjoy these properties:

Con�uence � Reduction is con�uent.
Strong Normalization � Every reduction strategy
terminates.
Canonicity � Hence every well-typed term of type A reduces
to a unique canonical form of A.

E.g. every closed term of type N reduces to a unique numeral.

The univalence axiom postulates a function

isotoid : A ' B → A = B

that is an inverse to the obvious function A = B → A ' B .

This breaks canonicity.

Possible Solutions

Lower our standards

Voevodsky's Conjecture � Propositional Canonicity

For every closed term t : N, there exists a numeral n and a
proof ` p : IdN(t, n).

Use a type theory in which isotoid is de�nable (Cubical Type
Theory, [Pol14])

Introduce a reduction rule for isotoid .

Our Approach

We begin with a small type theory, and work our way up to the full
HoTT.

1 λoe � Predicative Higher-Order Propositional Logic
A type theory with:

a universe Ω of propositions with ⊥ and ⊃
a universe U of small types with Ω and →
for any two terms M,N : A, a (large) type M =A N.

2 λoi � P.H.O.P.L. with Equality

Make δ =φ ε a proposition. (So we can form propositions like
M =A N ⊃ N =A M.)

For the future: universal quanti�cation, natural numbers, inductive
types, path elimination, . . .

About the Formalization

About the Formalization

This work is being formalized in Agda (work in progress).
It will involve several systems and reduction relations.
I want to prove only once:

M[x := N][y := P] ≡ M[y := P[x := N]][x := N]

If M � N then M[x := P]� N[x := P]

If M[x := P] is SN then M is SN.

Etc.

The formalization includes a general notion of `grammar' and
`reduction relation'. (To do: general notion of derivation rules.)

Grammars

Example: Simply-typed lambda calculus

Type A ::= ⊥ | A→ A

Term M ::= x | λx : A.M | MM

Two kinds: `Type' (non-variable kind) and `Term' (variable
kind)

Four constructors:

⊥ � kind Type
→ � kind (Type, Type) Type
λ � kind (Type, (Term) Term) Term
app � kind (Term, Term) Term

Grammars

A grammar over a taxonomy consists of: consists of:

a set of expression kinds;

a subset of expression kinds, called the variable kinds. We
refer to the other expession kinds as non-variable kinds.

a set of constructors, each with an associated constructor kind

of the form

((A11, . . . ,A1r1)B1, . . . , (Am1, . . . ,Amrm)Bm)C (1)

where each Aij is a variable kind, and each Bi and C is an
expression kind.

a function assigning, to each variable kind K , an expression
kind, the parent of K .

A taxonomy consists of:

a set of expression kinds;

a subset of expression kinds, called the variable kinds. We
refer to the other expession kinds as non-variable kinds.

record Taxonomy : Set1 where
�eld

VarKind : Set
NonVarKind : Set

data ExpressionKind : Set where
varKind : VarKind → ExpressionKind
nonVarKind : NonVarKind → ExpressionKind

We can now de�ne the set of expressions over a grammar:
data Subexpression : Alphabet → ∀ C → Kind C → Set
Expression : Alphabet → ExpressionKind → Set
Body : Alphabet → ∀ {K} → Kind (-Constructor K) → Set

Expression V K = Subexpression V -Expression (base K)
Body V {K} C = Subexpression V (-Constructor K) C

in�xr 50 _, ,_
data Subexpression where

var : ∀ {V} {K} → Var V K → Expression V (varKind K)
app : ∀ {V} {K} {C} → Constructor C → Body V {K} C →

Expression V K

out : ∀ {V} {K} → Body V (out K)
� : ∀ {V} {K} {A} {L} {C} → Expression (extend V A) L →

Body V {K} C → Body V (Π A L C)

Predicative Higher-Order Propositional Logic

The Simply-Typed Lambda Calculus

We begin with the simply-typed lambda calculus (no surprises so
far):

Type A ::= Ω | A→ A

Term M, φ ::= x | λx : A.M | MM

Γ, x : A ` M : B

Γ ` λx : A.M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Propositional Logic

Ω is the universe of propositions:

Term M, φ ::= · · · | ⊥ | φ ⊃ φ
Proof δ ::= p | λp : φ.δ | δδ

Γ ` δ : φ→ ψ Γ ` ε : φ

Γ ` δε : ψ

Γ, p : φ ` δ : ψ

Γ ` λp : φ.δ : φ→ ψ

Γ ` δ : φ Γ ` ψ : Ω

Γ ` δ : ψ
(φ ' ψ)

Extensional Equality

On top of this we add extensional equality.

Path P ::= e | ref (M) | univφ,φ (P,P) | P ⊃∗ P |
PNNP | λλλe : x =A x .P

Proof δ ::= · · · | P+ | P−

Judgement form Γ ` P : M =A N.
Two main ways to prove equality:

Γ ` M : A
Γ ` ref (M) : M =A M

Γ ` δ : φ→ ψ Γ ` ε : ψ → φ

Γ ` univφ,ψ (δ, ε) : φ =Ω ψ

We can eliminate equalities in Ω:

Γ ` P : φ =Ω ψ

Γ ` P+ : φ→ ψ

Γ ` P : ψ =Ω ψ

Γ ` P− : ψ → φ

Congruence rule for λ:

Γ, x : A, y : A, e : x =A y ` Mx =B Ny

Γ ` λλλe : x =A y .P : M =A→B N

e, x and y are bound within P .
Congruence rules and conversion

Γ ` P : φ =Ω φ′ Γ ` Q : ψ =Ω ψ′

Γ ` P ⊃∗ Q : φ ⊃ ψ =Ω φ′ ⊃ ψ′

Γ ` P : M =A→B M ′ Γ ` Q : N =A N ′

Γ ` PNN′Q : MN =B M ′N ′

Γ ` P : M =A N Γ ` M ′ : A Γ ` N ′ : A

Γ ` P : M ′ =A N ′
(M ' M ′,N ' N ′)

The Reduction Relation

The `β-rules':

(λx : A.M)N BM[x := N] (λp : φ.δ)εB δ[p := ε]

ref (φ)+ B λp : φ.p ref (φ)− B λp : φ.p

univφ,ψ (δ, ε)+ B δ univφ,ψ (δ, ε)− B ε

The Reduction Relation

We make univ and ref move out past ⊃∗ and application:

ref (φ) ⊃∗ univψ,χ (δ, ε)B univφ⊃ψ,φ⊃χ(λp, q.δ(pq), λp, q.ε(pq))

univφ,ψ (δ, ε) ⊃∗ ref (χ)B univφ⊃χ,ψ⊃χ (λp, q.p(εq), λp, q.p(δq))

univφ,ψ (δ, ε) ⊃∗ univφ′,ψ′
(
δ′, ε′

)
Bunivφ⊃φ′,ψ⊃ψ′

(
λp, q.δ′(p(εq)), λp, q.ε′(p(δq))

)
ref (φ) ⊃∗ ref (ψ)B ref (φ ⊃ ψ) ref (M)N1N2

ref (N)B ref (MN)

The Reduction Relation

We construct a proof of M =A→B N, then apply it. What is the
result?

ref (M)N1N2
ref (N)B ref (MN)

(λλλe : x =A y .P)N1N2
Q B P[x := N1, y := N2, e := Q]

If P 6≡ ref (−), then ref (λx : A.M)NN′ PB???

Γ, x : A ` M : B, Γ ` P : N =A N ′

Path Substitution

De�ne the operation of path substitution such that, if
P : M =A M ′ then
N{x := P : M ∼ M ′} ≡ N{x := P} : N[x := M] =B N[x := M ′].

x{x := P} def
= P

y{x := P} def
= ref (y) (y 6≡ x)

⊥{x := P} def
= ref (⊥)

(LL′){x := P : M ∼ M ′}
def
= L{x := P}L′[x :=M]L′[x :=M′]L

′{x := P}
(λy : A.L){x := P}

def
= λλλe : a =A a′.L{x := P, y := e : a ∼ a′}

(φ ⊃ ψ){x := P} def
= φ{x := P} ⊃∗ ψ{x := P}

The Reduction Relation

We construct a proof of M =A→B N, then apply it. What is the
result?

ref (M) ref (N)B ref (MN)

(λλλe : x =A y .P)MNQ B P[x := M, y := N, e := Q]

If P 6≡ ref (−), then
ref (λx : A.M)N,N′ P BM{x := P : N ∼ N ′}

Con�uence

Theorem (Local Con�uence)

The reduction relation → is locally con�uent. That is, if E → F

and E → G, then there exists H such that F � H and G � H.

Proof.

Case analysis on E → F and E → G . There are no critical
pairs.

Local-Con�uent : ∀ {V} {C} {K}
{E F G : Subexpression V C K} → E ⇒ F → E ⇒ G →
S[H ∈ Subexpression V C K] (F � H × G � H)

Corollary (Newman's Lemma)

Every strongly normalizing term is con�uent, hence has a unique

normal form.

Strong Normalization

Tait's Method

We de�ne a model of the type theory with types as sets of terms.
For every type (proposition, equation) A in context Γ, de�ne the set
of computable terms EΓ(A).
The de�nition is such that:

1 If M ∈ EΓ(A) then Γ ` M : A and M is strongly normalizing.

2 EΓ(A) is closed under key redex expansion.

3 If A ' B then EΓ(A) = EΓ(B).

De�ne the sets of computable terms, proofs and paths as follows.

EΓ(Ω)
def
={M | Γ ` M : Ω,M ∈ SN}

EΓ(A→ B)
def
={M | Γ ` M : A→ B,

∀(∆ ⊇ Γ)(N ∈ E∆(A)).MN ∈ E∆(B),

∀(∆ ⊇ Γ)(N,N ′ ∈ E∆(A))(P ∈ E∆(N =A N ′)).

ref (M)NN′ P ∈ EΓ(MN =B MN ′)}

Computable Terms

EΓ(⊥)
def
= {δ | Γ ` δ : ⊥, δ ∈ SN}

EΓ(φ→ ψ)
def
= {δ | Γ ` δ : φ→ ψ,

∀(∆ ⊇ Γ)(ε ∈ E∆(φ)).δε ∈ EΓ(ψ)}

EΓ(φ)
def
= {δ | Γ ` δ : ⊥, δ ∈ SN}

(φ neutral)

EΓ(φ)
def
= EΓ(nf (φ))

(φ a normalizable term of type Ω)

Computable Terms

EΓ(φ =Ω ψ)
def
= {P | Γ ` P : φ =Ω ψ,

P+ ∈ EΓ(φ→ ψ),P− ∈ EΓ(ψ → φ)}

EΓ(M =A→B M ′)
def
= {P | Γ ` P : M =A→B M ′,

∀(∆ ⊇ Γ)(N,N ′ ∈ E∆(A))(Q ∈ E∆(N =A N ′)).

PNN′Q ∈ E∆(MN =B M ′N ′)}

The Main Theorem

Theorem

Let σ be a substitution such that, for all x : A ∈ Γ, we have
σ(x) ∈ E∆(A). Then, if Γ ` M : A, then M[σ] ∈ E∆(A).

Computable-Sub : ∀ {U} {V} {K} (σ : Sub U V) {Γ} {Δ}
{M : Expression U (varKind K)} {A} →
σ : Γ ⇒C Δ → Γ ` M : A → valid Δ → E' Δ (A [σ]) (M [σ])

Corollary (Strong Normalization)

Every well-typed term, proof and path is strongly normalizing.

Strong-Normalization : ∀ V K (Γ : Context V)
(M : Expression V (varKind K)) A → Γ ` M : A → SN M

Corollary (Consistency)

There is no proof δ such that ` δ : ⊥.

The System λoi

Internal Equality

We place the propositions M =A N inside Ω, so we can form (and
prove!)

sym : M =A N ⊃ N =A M, trans : M =A N ⊃ N =A P ⊃ M =A P

Γ ` M : A Γ ` N : A
Γ ` M =A N : Ω

Γ ` δ : M =A M ′ Γ ` ε : N =A N ′

Γ ` δ =∗A ε : (M =A N) =Ω (M ′ =A N ′)

New reductions include:

ref (φ) =∗Ω univψ,χ (δ, ε)

Bunivφ=Ωψ,φ=Ωχ

(
λp : φ =ψ .univφ,χ

(
λq : φ.δ(p+q), λq : χ.p−(εq)

)
,

λp : φ =Ω χ.univφ,ψ
(
λq : φ.ε(p+q), λq : ψ.p−(δq)

))

Conclusion

Conclusion

We have shown two systems that each have all these
properties:

Univalence
Strong Normalization
Con�uence of typed terms
Canonicity

So it is possible!

The simplicity is due to the separation between terms and
proofs.

For the future: extract a normalizer. Universal quanti�cation.

Follow the progress here:
www.github.com/radams78/Univalence

www.github.com/radams78/Univalence

Reference

Andrew Polonsky.
Internalization of extensional equality.
CoRR, abs/1401.1148, 2014.

	Introduction
	About the Formalization
	Predicative Higher-Order Propositional Logic
	Strong Normalization
	The System o i
	Conclusion
	Appendix

