A Strongly Normalizing Computation Rule for
Univalence in Higher-Order Propositional Logic

Robin Adams Marc Bezem Thierry Coquand

TYPES 2016, Novi Sad, Serbia
May 26 2016

This talk is a literate Agda file:
https://www.github.com/radams78/Univalence

https://www.github.com/radams78/Univalence

Introduction

Type Theory Orthoodoxy

m To enjoy a good meaning explanation, a type theory should
enjoy these properties:
m Confluence — Reduction is confluent.
m Strong Normalization — Every reduction strategy

terminates.
m Canonicity — Hence every well-typed term of type A reduces
to a unique canonical form of A.

m E.g. every closed term of type N reduces to a unique numeral.

m The univalence axiom postulates a function
isotoid : A~B — A=B

that is an inverse to the obvious function A=B — A~ B.

m This breaks canonicity.

Possible Solutions

m Lower our standards

m Voevodsky’s Conjecture — Propositional Canonicity
For every closed term t : N, there exists a numeral n and a
proof I p : ldx(t, n).

m Use a type theory in which isotoid is definable (Cubical Type
Theory, [Pol14])

m Introduce a reduction rule for isotoid.

Our Approach

We begin with a small type theory, and work our way up to the full
HoTT.
Aoe — Predicative Higher-Order Propositional Logic
A type theory with:
m a universe of propositions with 1 and D
m a universe U of small types with Q and —
m for any two terms M, N : A, a (large) type M =4 N.
Aoi — P.H.O.P.L. with Equality
Make 0 =, € a proposition. (So we can form propositions like
M=xs NDN=4 /\//)
For the future: universal quantification, natural numbers, inductive
types, path elimination, ...

About the Formalization

About the Formalization

This work is being formalized in Agda (work in progress).
It will involve several systems and reduction relations.
| want to prove only once:

m M[x := N][y := P] = M[y := P[x := N]][x := N]
m If M — N then M[x := P] - N[x := P]

m If M[x := P] is SN then M is SN.

m Etc.

The formalization includes a general notion of ‘grammar’ and
‘reduction relation’. (To do: general notion of derivation rules.)

Grammars

Example: Simply-typed lambda calculus

Type A = L|A-A
Term M = x| x:AM|MM

m Two kinds: ‘“Type' (non-variable kind) and “Term’ (variable
kind)
m Four constructors:
m 1L — kind Type
— — kind (Type, Type) Type
A — kind (Type, (Term) Term) Term
app — kind (Term, Term) Term

Grammars

A grammar over a taxonomy consists of: consists of:
m a set of expression kinds;

m a subset of expression kinds, called the variable kinds. We
refer to the other expession kinds as non-variable kinds.

m a set of constructors, each with an associated constructor kind
of the form

((A11,...,A1n)B1, ..., (Am1, -, Amr,,) Bm)C (1)

where each Aj; is a variable kind, and each B; and C is an
expression kind.

m a function assigning, to each variable kind K, an expression
kind, the parent of K.

A taxonomy consists of:

m a set of expression kinds;

m a subset of expression kinds, called the variable kinds. We
refer to the other expession kinds as non-variable kinds.

record Taxonomy : Set; where
field
VarKind : Set
NonVarKind : Set

data ExpressionKind : Set where
varKind : VarKind — ExpressionKind
nonVarKind : NonVarKind — ExpressionKind

We can now define the set of expressions over a grammar:
data Subexpression : Alphabet — V C — Kind C — Set
Expression : Alphabet — ExpressionKind — Set
Body : Alphabet — V {K} — Kind (-Constructor K) — Set

Expression V K = Subexpression V -Expression (base K)
Body V {K} C = Subexpression V (-Constructor K) C

infixr 50 _,,
data Subexpression where
var : V {V} {K} — Var V K — Expression V (varKind K)

app : V {V} {K} {C} — Constructor C — Body V {K} C —
Expression V K

out : V {V} {K} — Body V (out K)

. VAV {K} {A} {L} {C} — Expression (extend V A) L —
Body V {K} C — Body V(M AL C)

Predicative Higher-Order Propositional Logic

The Simply-Typed Lambda Calculus

We begin with the simply-typed lambda calculus (no surprises so

far):
Type A = QA=A
Term M,¢ == x| x:AM|MM
x:AFM:B rTFM:A—>B THEN:A

N-Xx:AM:A—B - MN:B

Propositional Logic

Q is the universe of propositions:

Term M,¢ = ---|L|p D¢

Proof 0 == plAp:¢.6|dd
Nr-é:¢p— The:o Mp:okEd v

M= de:y FrEXp:@d:0p—

Fd:¢ TFy:Q,
FEo:o (¢ v)

Extensional Equality

On top of this we add extensional equality.

Path P = e|ref(M)|univge(P,P) |P D" P |
PNNP ’ Me : x =A x.P
Proof § == -+ |PT|P~

Judgement form ' P : M =, N.
Two main ways to prove equality:

r-FM:A (Fd: 9= ThHeYp—9
Feref(M): M=4 M [univgy (0,€) 1 ¢ =q ¢

We can eliminate equalities in Q:

FP:¢g=q¢ THP: =9
FFPr g—¢ THEP ¢—¢

Congruence rule for A:

Mx:Ay:Ae.x=payF Mx=g Ny
FTEXXe:x=py.P:M=4 N

e, x and y are bound within P.
Congruence rules and conversion

FP:¢p=q¢ THQ:v=q
r=P2>*Q:¢D¢Y=q¢ DY
TFP:M=pgM TFEQ:N=4N
M- Py @: MN =g M'N’

[FP:M=aN TFM:A TFN:A
[EP .M =a N

(M~ M N~N)

The Reduction Relation

The ‘B-rules’:
(Ax : AM)N > M[x := N] (Ap:¢.0)er> 0[p = €]
ref (¢)" > \p: é.p ref ()" > Ap: d.p

univyy (6,€)" > 6 unive o (9,€)” > €

The Reduction Relation

We make univ and ref move out past D* and application:

ref (¢) D univy, , (0, €) > univgsy g5y (AP, 9.6(pg), Ap, -€(pq))
univg,y (6, €) D ref (x) > univgsy gy (AP, g.p(€q), Ap, 9.p(0q))
unive,y (6, €) D univy u (8, €)
D>UNiVgse gy (AP, 4.0'(p(€9)), Ap, 9.€¢'(p(59)))

ref (¢) D* ref (¢) > ref (¢ D ¥) ref (M), n, ref (N) o> ref (MN)

The Reduction Relation

We construct a proof of M =4_,g N, then apply it. What is the
result?

m ref (M), y, ref (V) > ref (MN)
B (Me:x=ay.P)yn, Q> Plx:= Ny, y := Ny, e := Q]
m If P #ref (=), then ref (Ax : A.M)pp P>?77

Nx:AFM:B, FTEP:N=4N

Path Substitution

Define the operation of path substitution such that, if
P: M =4 M then
N{x =P : M~ M}=N{x:=P}:N[x:=M]=p N[x:=M].

x{x := P} p
yix=PyEref(y) (v #x)
L{x =P} % ref (1)

(LLY{x :=P: M~ M}

&« L{x = P}ppc=mu=m L' {x :== P}

(A\y : AL){x =P}

déf»)\e:a:A al{x =P,y:=e:a~3d}

def

(¢ D ¢Y){x =P} = o{x:= P} D% ¢{x:= P}

The Reduction Relation

We construct a proof of M =4_,g N, then apply it. What is the
result?

m ref (M) ref (N) o> ref (MN)
B (Me:x=4y.P)unQr> Plx =M,y :=N,e:= Q]
m If P # ref (—), then

ref (Ax : AM)y o P> M{x:=P: N~ N}

Confluence

Theorem (Local Confluence)

The reduction relation — is locally confluent. That is, if E — F
and E — G, then there exists H such that F — H and G — H.

Case analysis on E — F and E — G. There are no critical
pairs. O

Local-Confluent : V {V} {C} {K}
{E F G : Subexpression VCK} - E=F — E= G—

Y[H € Subexpression VC K] (F— H x G— H)

Corollary (Newman's Lemma)

Every strongly normalizing term is confluent, hence has a unique
normal form.

Strong Normalization

Tait's Method

We define a model of the type theory with types as sets of terms.
For every type (proposition, equation) A in context I, define the set
of computable terms Er(A).

The definition is such that:

If M € Er(A) then T = M : A and M is strongly normalizing.

Er(A) is closed under key redex expansion.
If A~ B then Er(A) = Er(B).

Define the sets of computable terms, proofs and paths as follows.

E(Q) & (M |THFM:Q MeSN}

E(A—B) ¥ M|T-m:A- B,
V(A D T)(N € Ea(A)).MN € Ea(B),
V(A 2 T)(N,N" € EA(A))(P € Ea(N =a N')).

ref (M) P € Er(MN =g MN')}

Computable Terms

Er(L) % (5T H5:1,6cSN}

Er(p—) E{0|THo:6— v,
V(A D T)(e € Ea(9)).0¢ € Er(¢)}
Er(¢) & (6T H6:1,6eSN}
(¢ neutral)

def

Er(¢) = Er(nf(9))

(¢ a normalizable term of type Q)

Computable Terms

def

Er(p =) = {P|TFP:¢p=q,
Pt € E-(¢ —), P™ € Er(¢) — ¢)}
Er(M=p_g M) (P|THP:M=p_gM,
V(A DT)(N,N' € EA(A)(Q € Ea(N =4 N')).
Pun @ € EA(MN =B /\///NI)}

The Main Theorem

Let o be a substitution such that, for all x : A €T, we have
o(x) € Ea(A). Then, if[= M : A, then M[o] € Ep(A).

Computable-Sub : V {U} {V} {K} (o: Sub U V) {I'} {A}
{M : Expression U (varKind K)} {A} —

c:N=CA—-TFM:A—-vaidA—-FE A(A[c]) M[o])

Corollary (Strong Normalization)

Every well-typed term, proof and path is strongly normalizing.

Strong-Normalization : V V K (I : Context V)
(M : Expression V (varKind K)) A—-T+-M:A— SN M

Corollary (Consistency)

There is no proof § such thatt6: L.

The System Aoi

Internal Equality

We place the propositions M =4 N inside €2, so we can form (and
prove!)

sym: M=pa NDODN=g M, trans: M=pa NDN=4,PDODM=,P

[FM:A TEN:A
[FM=sN:Q
[Fd:M=aM Thke: N=4N
FEo=he: (M=aN)=q (M =2 N)

New reductions include:

ref (¢) =g univy , (9, €)
D> UNIV g—qis,6=ax (AP 1 @ =y univgy (Aq: .6(p*q), Ag : x.p™ (€q)),
AP 1§ =q x.univg (/\q cp.e(pTq), A\q : w.p*(éq)))

Conclusion

Conclusion

m We have shown two systems that each have all these
properties:
m Univalence
m Strong Normalization
m Confluence of typed terms
m Canonicity

m So it is possible!

m The simplicity is due to the separation between terms and
proofs.

m For the future: extract a normalizer. Universal quantification.

m Follow the progress here:
www.github. com/radams78/Univalence

www.github.com/radams78/Univalence

Reference

[§ Andrew Polonsky.
Internalization of extensional equality.
CoRR, abs/1401.1148, 2014.

	Introduction
	About the Formalization
	Predicative Higher-Order Propositional Logic
	Strong Normalization
	The System o i
	Conclusion
	Appendix

