A Linear Dependent Type Theory

Zhaohui Luo	Yu Zhang
Royal Holloway	Institute of Software
University of London	Chinese Academy of Sciences

Linear types and dependent types

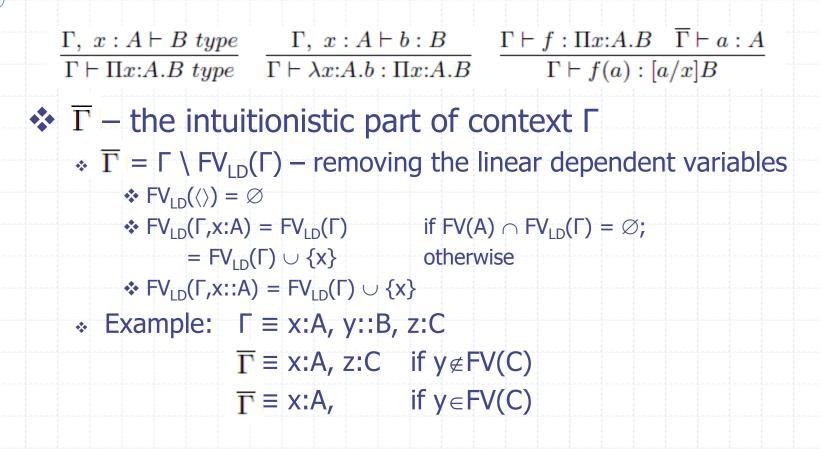
- ✤ Linear types (Girard 1987): A–•B
- ✤ Dependent types (Martin-Löf 1970s): Πx:A.B[x]
- How to combine them?
 - In most of existing work (Pfenning et al 2002, Krishnaswami et al 2015, Vákár 2015)
 - ✤ B[x] only when x is intuitionistic.
 - ↔ Hence it is possible to separate intuitionistic Γ and linear Δ : Γ ; Δ |- a : A
 - * Δ depends on Γ , but not the other way around.
 - * McBride (2016)
 - "Prices" in contextual entries and typing and allow type dependency on 0-priiced variables – discussion later.
 - Independent with this work (we became aware of Conor's work only two weeks ago – detailed comparison due.)

This paper: LDTT, where types can depend on linear variables.

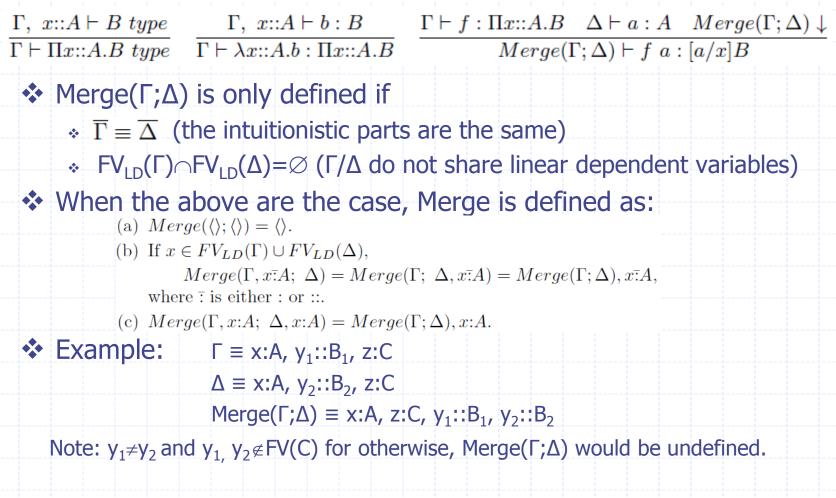
LDTT: Linear and Intuitionistic Variables

- Contexts are sequences of two forms of entries: x:A, y::B[x], z:C[x,y], ...
 - * Intuitionistic variables x : A
 - ✤ Linear variables
 y :: B
- Types dependent on linear variables
 - * Example: x::A, f : $A \rightarrow A \vdash Eq_A(f x, x)$ type

Intuitionistic Π -types



Linear *Π*-types



May 2016

TYPES 2016

Equality Types

Formation rule $\Gamma \vdash a: A \quad \Delta \vdash b: A \quad merge(\Gamma; \Delta) \downarrow$ $merge(\Gamma; \Delta) \vdash E\overline{q_A(a, b) \ type}$ * merge(Γ ;Δ) is defined only when var-sharing is OK: $x \ge A \in \Gamma$, $x \ge B \in \Delta \Rightarrow A \equiv B$ and 2 is both : or both :: * merge(Γ ;Δ) is defined as (a) $merge(\Gamma; \langle \rangle) = \Gamma.$ (b) $merge(\Gamma; x; A, \Delta) = \begin{cases} merge(\Gamma; \Delta) & \text{if } x \in FV(\Gamma) \\ merge(\Gamma, x; A; \Delta) & \text{otherwise} \end{cases}$ Examples: * x::A, f : A- $A \vdash f x$: A and x::A $\vdash x$: A \rightarrow x::A, f : A- $A \vdash Eq_A(f x, x)$ type * x::A \mid x : A and y::A \mid y : A \rightarrow x::A, y::A \mid Eq(x,y) type

Introduction and elimination rules

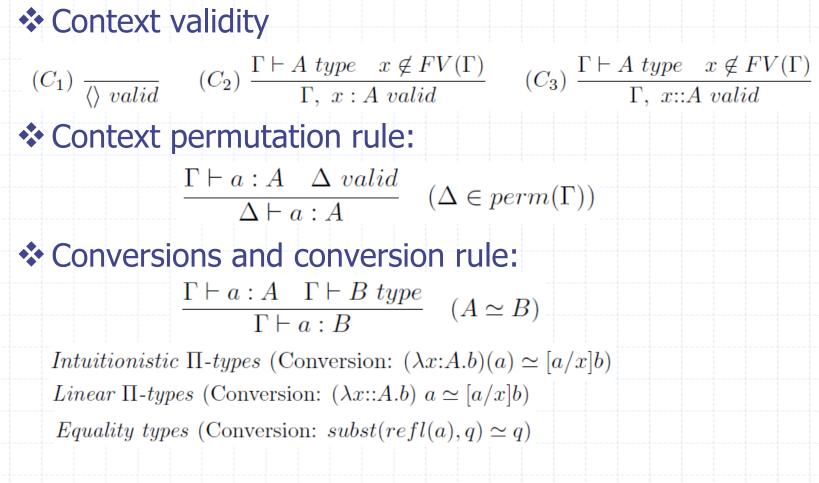
 $\frac{\Gamma \vdash a : A}{\Gamma \vdash refl(a) : Eq_A(a, a)}$

 $\frac{\Gamma \vdash p : Eq_A(a, b) \quad \Delta \vdash q : B[a] \quad Merge(\Gamma; \Delta), x: A \vdash B[x] \ type \ (: \in \{:, ::\}) \quad Merge(\Gamma; \Delta) \downarrow}{Merge(\Gamma; \Delta) \vdash subst(x.B, p, q) : B[b]}$

Variable Typing

 $\Gamma, x : A, \Gamma' valid$ (for all $y :: \Gamma_y \in \Gamma, y \in D_{\Gamma}(x)$) Γ' intuitionistic $(\overline{:} \in \{:, ::\})$ $\Gamma, x:A, \Gamma' \vdash x : A$ where * $D_{\Gamma}(x)$ is defined as: $\mathbf{x} \in \mathsf{D}_{\mathsf{\Gamma}}(\mathsf{x});$ ♦ For any y∈D_Γ(x), FV(Γ_v) ⊆ D_Γ(x). Examples: ✤ Judgements derivable intuitionistically are derivable. * x::A,y:B(x) |- x:A and x::A,y:B(x) |- y:B(x) are derivable since $x \in B(x)$. * x::A, x'::A, y:B(x) | - y : B(x) is *not* derivable if $x' \notin B(x)$.

Other Rules (for completeness)



May 2016

TYPES 2016

Weak Linearality

- Defn (essential occurrences) Let \(\Gamma\) a:A. The multiset \(E_\Gamma\) of variables essentially occurring in a under \(\Gamma\) is inductively defined as follows (Eq-types omitted):
 - * Variable typing: $E_{\Gamma, x:A, \Gamma'}(x) = D_{\Gamma, x:A, \Gamma'}(x)$
 - * λ -typing: $E_{\Gamma}(\lambda x : A.b) = E_{\Gamma,x:A}(b) \setminus \{x\}$
 - * Intuitionistic applications: $E_{\Gamma}(f(a)) = E_{\Gamma}(f) \cup E_{\overline{\Gamma}}(a)$
 - Linear applications: $E_{Merge(\Gamma;\Delta)}(f \ a) = E_{\Gamma}(f) \cup E_{\Delta}(a)$
- Theorem (weak linearality)

In LDTT, every linear variable occurs essentially for exactly once in a well-typed term. Formally,

$$\Gamma$$
, y::B, $\Gamma' \mid -a : A \rightarrow y \in E_{\Gamma,y::B,\Gamma'}(a)$ only once.

Implementation

Type checking algorithm

- ✤ Follows the traditional algorithm for type inference/checking.
- Decidability, if assuming meta-theoretic results (expected).
- Prototype implementation in Haskell
 - ✤ Merging oprns correspond to splitting oprns.
 - Available online: https://github.com/yveszhang/ldtyping

Related Work

Work on linearity in dependent types

- Eg, (Pfenning et al, I&C02), (Krishnaswami et al, POPL15), (Vákár, FoSSaCS 15)
- ✤ Lambek calculus with dependent types (Luo, TYPES 2015)
- ✤ Types in all above are non-dependent on linear/Lambek variables

McBride 2016 (Walder Festschrift)

More general setting: considering "prices" in {0,1,w}:

 $ρ_1 x_1 : A_1, ..., ρ_n x_n : A_n \mid - ρ a:A$

and different Π -types ($\rho x:A$) \rightarrow B:

- ↔ (ω x:A)→B corresponds to intuitionistic Π -types
- ↔ (1x:A)→B corresponds to linear Π -types
- ✤ Type dependency B[x] only on "0-priced" variables x.
- Independent with the current work and comparison to be done.

Future Work

LDTT: allowing types to depend on linear variables

- Simplicity
 - LDTT gives a "straightforward" extension with linearality
 - cf, McBride's work, analysis to be done
- ✤ Examples of reasoning
 - ✤ to be done with our prototype implementation

Extension to other linear/Lambek type constructors