
Session Types: Achievements and Challenges

Simon J. Gay

School of Computing Science, University of Glasgow, UK
Simon.Gay@glasgow.ac.uk

Abstract

Session types are type-theoretic specifications of communication protocols, introduced by Kohei
Honda and collaborators in the mid-1990s. They define the type and sequence of messages
exchanged via a communication medium, and allow type-checking techniques to be used to verify
protocol implementations. Whereas data types codify the static structure of information in a
computer program, session types codify the dynamic structure of communication in a software
system. The classic slogan “algorithms + data structures = programs” can be generalised
to “programs + communication structures = systems”, and the full range of type-checking
technology can be generalised too.

In the simplest form, a session type specifies a straightforward sequence of messages. The
type !int.?bool.end describes how to run a protocol on an endpoint of a communication channel:
first send (!) an integer, then receive (?) a boolean, then terminate. The other endpoint has the
dual type ?int.!bool.end. More complex protocols include choice and repetition. For example,
the recursive type S defined by S = &〈start :?int.!bool.S, stop : end〉 describes a protocol that
offers a choice between start and stop, each with its own continuation protocol. The basic idea
for protocol verification is to match the structure of a session type with the use of communication
operations in a program.

The twenty years since the introduction of session types have seen a dramatic growth in
research activity. There is now a substantial community, and most programming-language-
related conferences regularly include papers on session types. Several themes of research can
be identified:

• Generalisation of session types from two-party to multi-party sessions.

• Transfer of session types from pi-calculus to a range of programming language paradigms.

• Logical foundations of session types via a Curry-Howard correspondence with linear logic.

• Connections between session types and automata theory.

• Development of programming language implementations and session-type-based tools.

• Broadening the original focus on static type-checking to include dynamic monitoring.

• Incorporation of time and error-handling.

• Connections with more general type-theoretic concepts such as dependent types, gradual
types and typestate.

The lecture will introduce session types, survey the main themes and achievements of the
field, and suggest directions for future work that are likely to be of interest to researchers from
the wider area of type theory.


