
A Strongly Normalizing Computation Rule for Univalence

in Higher-Order Propositional Logic

Robin Adams1, Marc Bezem1, and Thierry Coquard2

1 Universitetet i Bergen, Bergen, Norway
{robin.adams,marc}@uib.no

2 University of Gothenburg, Gothenburg, Sweden
coquand@chalmers.se

Homotopy type theory offers the promise of a formal system for the univalent foundations of
mathematics. However, if we simply add the univalence axiom to type theory, then we lose the
property of canonicity — that every term computes to a normal form. A computation becomes
‘stuck’ when it reaches the point that it needs to evaluate a proof term that is an application
of the univalence axiom. So we wish to find a way to compute with the univalence axiom.

As a first step, we present here a system of higher-order propositional logic, with a universe
Ω of propositions closed under implication and quantification over any simple type over Ω.
We add a type M =A N for any terms M , N of type A, and two ways to prove an equality:
reflexivity, and the univalence axiom. We present reduction relations for this system, and prove
the reduction confluent and strongly normalizing on the well-typed terms.

We have begun to formalize this proof in Agda, and intend to complete the formalization
by the date of the workshop.

Predicative higher-order propositional logic with equality. We call the following type
theory predicative higher-order propositional logic. It contains a universe Ω of propositions that
contains ⊥ and is closed under implication ⊃. The system also includes the higher-order types
that can be built from Ω by →. Its grammar and rules of deduction are as follows.

Proof δ ::= p | δ · δ | λp : φ.δ
Term M,φ ::= x | ⊥ |MM | λx : A.M | φ ⊃ φ
Type A ::= Ω | A→ A

〈〉 valid
Γ valid

Γ, x : A valid

Γ ` φ : Ω

Γ, p : φ valid
Γ valid

Γ ` x : A
(x : A ∈ Γ) Γ valid

Γ ` p : φ
(p : φ ∈ Γ)

Γ valid
Γ ` ⊥ : Ω

Γ ` φ : Ω Γ ` ψ : Ω

Γ ` φ ⊃ ψ : Ω

Γ `M : A→ B Γ ` N : A
Γ `MN : B

Γ ` δ : φ ⊃ ψ Γ ` ε : φ

Γ ` δ · ε : ψ

Γ, x : A `M : B

Γ ` λx : A.M : A→ B

Γ, p : φ ` δ : ψ

Γ ` λp : φ.δ : φ ⊃ ψ
Γ ` δ : φ Γ ` ψ : Ω

Γ ` δ : ψ
(φ ' ψ)

Extensional equality. On top of this system, we add an equality predicate that satisfies
univalence.

Term M,φ ::= · · · |M =A M
Proof δ ::= · · · | ref (M) | univφ,φ (δ, δ) | λλλx : x =A x.δ | δ ⊃ δ | δδ

| δ+ | δ−

Strongly Normalizang Computation Rule for Univalence R. Adams, M. Bezem, T. Coquand

• For any M : A, there is an equality proof ref (M) : M =A M .

• Univalence. Given proofs δ : φ ⊃ ψ and ε : ψ ⊃ φ, there is an equality proof
univφ,ψ (δ, ε) : φ =Ω ψ.

• Given a proof δ : φ =Ω ψ, we have proofs δ+ : φ ⊃ ψ and δ− : ψ ⊃ φ.

• Given an equality proof Γ, x : A, y : A, e : x =A y ` δ : Mx =B Ny, there is an equality
proof Γ ` λλλe : x =A y.δ : M =A→B N . (Here, e, x and y are bound within δ.)

• Congruence. If δ : φ =Ω φ′ and ε : ψ =Ω ψ′ then δ ⊃ ε : φ ⊃ ψ =Ω φ′ ⊃ ψ′. If
δ : M =A→B M ′ and ε : N =A N

′ then δε : MN =B M ′N ′.

The reduction relation. We define the following reduction relation on proofs and equality
proofs.

(ref (φ))+ λx : φ.x (ref (φ))− λx : φ.x univφ,ψ (δ, ε)
+ δ univφ,ψ (δ, ε)

− ε

(ref (φ) ⊃ univψ,χ (δ, ε)) univφ⊃ψ,φ⊃χ (λf : φ ⊃ ψ.λx : φ.δ(fx), λg : φ ⊃ χ.λx : φ.ε(gx))

(univφ,ψ (δ, ε) ⊃ ref (χ)) univφ⊃χ,ψ⊃χ (λf : φ ⊃ χ.λx : ψ.f(εx), λg : ψ ⊃ χ.λx : φ.g(δx))

(univφ,ψ (δ, ε) ⊃ univφ′,ψ′ (δ′, ε′)

 univφ⊃φ′,ψ⊃ψ′ (λf : φ ⊃ φ′.λx : ψ.δ′(f(εx)), λg : ψ ⊃ ψ′.λy : φ.ε′(g(δy)))

(ref (φ) ⊃ ref (ψ)) ref (φ ⊃ ψ) ref (M) ref (N) ref (MN)

(ref (λx : A.M))δ {δ/x}M (δ a normal form not of the form ref ())

(λλλe : x =A y.δ)ε [M/x,N/y, ε/e]δ (ε : M =A N)

Here, {δ/x}M is an operation called path substitution defined such that, if δ : N =A N ′, then
{δ/x}M : [N/x]M = [N ′/x]M .

Main Theorem.

Theorem 1. In the system described above, all typable terms, proofs and equality proofs are
confluent and strongly normalizing. Every closed normal form of type φ =Ω ψ either has the
form ref () or univ(,). Every closed normal form of type M =A→B N either has the form
ref () or is a λλλ-term.

Thus, we know that a well-typed computation never gets ‘stuck’ at an application of the
univalence axiom.

Proof. The proof uses the method of Tait-style computability. We define the set of computable
terms EΓ(A) for each type A, and computable proofs EΓ(M =A N) for any terms Γ `M,N : A.
We prove that reduction is locally confluent, and that the computability predicates are closed
under reduction and well-typed expansion. We can then prove that, if Γ ` M : A, then
M ∈ EΓ(A); and if Γ ` δ : M =A N , then δ ∈ EΓ(M =A N).

Remark. Tait’s proof relies on confluence, which does not hold for this reduction relation in
general. In the proof, we prove confluence ‘on-the-fly’. That is, whenever we require a term to
be confluent, the induction hypothesis provides us with the fact that that term is computable,
and hence strongly normalizing and confluent.

2

