A Strongly Normalizing Computation Rule for Univalence
in Higher-Order Propositional Logic

Robin Adams', Marc Bezem!, and Thierry Coquard?

1 Universitetet i Bergen, Bergen, Norway
{robin.adams,marc}@uib.no
2 University of Gothenburg, Gothenburg, Sweden
coquand@chalmers.se

Homotopy type theory offers the promise of a formal system for the univalent foundations of
mathematics. However, if we simply add the univalence axiom to type theory, then we lose the
property of canonicity — that every term computes to a normal form. A computation becomes
‘stuck’ when it reaches the point that it needs to evaluate a proof term that is an application
of the univalence axiom. So we wish to find a way to compute with the univalence axiom.

As a first step, we present here a system of higher-order propositional logic, with a universe
Q of propositions closed under implication and quantification over any simple type over 2.
We add a type M =4 N for any terms M, N of type A, and two ways to prove an equality:
reflexivity, and the univalence axiom. We present reduction relations for this system, and prove
the reduction confluent and strongly normalizing on the well-typed terms.

We have begun to formalize this proof in AGDA, and intend to complete the formalization
by the date of the workshop.

Predicative higher-order propositional logic with equality. We call the following type
theory predicative higher-order propositional logic. It contains a universe §2 of propositions that
contains | and is closed under implication D. The system also includes the higher-order types
that can be built from 2 by —. Its grammar and rules of deduction are as follows.

Proof d == pld-d|Ip:g.d
Term M,¢ == z|L|MM|Xx:AM|¢pD¢
Type A = Q|A—-A
T valid M'E¢:Q T valid . I" valid .
() valid I,z : A valid T,p: ¢ valid Fl—a::A(x'AEF) Fl—p:qb(p'(ber)
T valid F'k¢g:Q THY:Q
'EL:Q oDy :Q
'-M:A—-B TFN:A TI'Foé:9D¢ T'ke:¢
I'-MN:B 'Ed-e: v
I'z:AFM:B Tip:ob6: 'Ed: ¢ P}—LZJ:Q(~)
'FX:AM:A— B FEXp:¢.d:0d DY 'Ed: oy A

Extensional equality. On top of this system, we add an equality predicate that satisfies
univalence.

Term M,¢ == ---|M=x M
Proof)

|
~
@
@
—
=
c
3.
<
s
©-
—~
>
)
&
&
I
b
8
>
==
U
-
-
.

Strongly Normalizang Computation Rule for Univalence R. Adams, M. Bezem, T. Coquand

e For any M : A, there is an equality proof ref (M) : M =4 M.

e Univalence. Given proofs § : ¢ D ¢ and ¢ : ¢ D ¢, there is an equality proof
univy ., (9, €) : ¢ =q .

e Given a proof § : ¢ =q 1, we have proofs 67 : ¢ D1 and §~ : ¢ D ¢.

e Given an equality proof Iz : A,y : A,e:z =4 y+F §: Mx =g Ny, there is an equality
proof 'F Me:x=4y.0 : M =45 N. (Here, e, z and y are bound within 4.)

e Congruence. If § : ¢ =g ¢’ and e : ¢ =g ¢ then d De: ¢ DY =q ¢ DY'. If
0:M=4_,g M and e: N =4 N’ then de : MN =g M'N’.

The reduction relation. We define the following reduction relation on proofs and equality
proofs.

(ref (§))T ~ Az : g (ref ()™ ~ dx: g univg y (8,€)% ~ 8 univy (0,€)" ~> €

(ref (@) D univy y (6,€)) ~ univgsy ooy (Af 1 ¢ D YA 9.6(fx), Ag: ¢ D x. Az : d.e(gx))
(univg ¢ (6,€) D ref (x)) ~ univgsy oy (Af 1 @ D x Az . fex), Ag : ¥ D x. Az : ¢.g(dx))
(univ¢’w (5, 6) D univ¢/’¢/ ((S/, 6/)
~ UMV oy (Af 20 D @' Ae 2.0 (flex)), Ag 9 D ¢ Ay = b.€' (9(0y)))

(ref (@) D ref (1)) ~ ref (¢ D) ref (M) ref (N) ~» ref (M N)
(ref A\x : A.M))§ ~ {6/} M (6 a normal form not of the form ref (_))
(Me:xz=4y.0)e~ [M/x,N/y,e/eld (e: M =4 N)

Here, {§/2} M is an operation called path substitution defined such that, if § : N =4 N’, then
{6/} M : [N/x]M = [N’ /x| M.

Main Theorem.

Theorem 1. In the system described above, all typable terms, proofs and equality proofs are
confluent and strongly normalizing. Every closed normal form of type ¢ =q 1 either has the
form ref (_) or univ(.,-). Ewvery closed normal form of type M =a_,g N either has the form
ref (0) or is a M\-term.

Thus, we know that a well-typed computation never gets ‘stuck’ at an application of the
univalence axiom.

Proof. The proof uses the method of Tait-style computability. We define the set of computable
terms Er(A) for each type A, and computable proofs Er(M =4 N) for any terms ' = M, N : A.
We prove that reduction is locally confluent, and that the computability predicates are closed
under reduction and well-typed expansion. We can then prove that, if ' = M : A, then
M e Er(A);and if THé: M =4 N, then § € Er(M =4 N).

Remark. Tait’s proof relies on confluence, which does not hold for this reduction relation in
general. In the proof, we prove confluence ‘on-the-fly’. That is, whenever we require a term to
be confluent, the induction hypothesis provides us with the fact that that term is computable,
and hence strongly normalizing and confluent.

