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As homotopy type theory is viewed as a possible foundation of mathematics, it is natural to ask
whether it can be used to develop category theory. This question has already been considered
frequently. As we know, ordinary category theory can indeed be done in a nice way [1]. Given
that types carry the structure of ∞-groupoids, it is not surprising that ordinary categories
are often not sufficient. In particular, the universe itself is not a category in the sense of [1].
Therefore, what we want is a theory of (∞, 1)-categories (simply referred to as ∞-categories).
This is partially explored by Cranch [4], however only concrete categories (whose higher structure
is reflected in the universe) are covered.

We expect that a general theory of ∞-categories has many applications in homotopy type
theory. As equalities stated internally carry structure, different equalities are a priori not
necessarily coherent. More often than not, this coherence will however be necessary for further
constructions. While it is sometimes possible, it often does not seem feasible to handle a
potentially huge number of coherence conditions manually. An example and main motivation
for our development is the the project that develops a syntactical theory of higher inductive
types, pursued by Dijkstra, Nordvall Forsberg, and two of the current authors [2] and is based
on the semantics for higher inductive types described by Lumsdaine and Shulman [7]. The
authors work with generalised containers, container algebras, and algebra morphisms, but the
presentation is rendered extremely cumbersome by the fact that all the categorical laws only
hold up to homotopy. For any given representation of a higher inductive type, stated as a list
of constructors, the number of coherences that need to be considered is finite. In principle,
this should allow the construction to go through; however, in practice, the sheer amount of
these coherences cannot be handled manually in all but the most trivial cases. With a proper
framework for ∞-categories, we expect that we get a clean way of resolving this problem.

A standard model of ∞-categories in set theory are Kan simplicial sets. This is essentially
the notion of ∞-categories that we want to use, replacing sets by types. Note that we do not
crucially insist on having a type of ∞-categories. Unless we extend homotopy type theory by
some “infinitary” construction, this would in fact be an unreasonable expectation akin to the
famous open problem of defining semisimplicial types. This is an important difference compared
to the development of categories in the sense of [1]. What we want to settle for instead is a
more “external” notion of ∞-category which will however have a type of cells on any given level.
A framework in which this can be formalised would be Voevodsky’s homotopy type system [9]
or our 2-level theory [3]. Not having a type of ∞-categories does not seem to be a problem for
typical applications. For example in the described project of developing a syntactical theory of
higher inductive types, it will be sufficient to extract a finite number of coherence conditions
from the ∞-categorical considerations; and such a finite collection will form a type.

As a further simplification, we choose to drop the requirement of degeneracies (or identities).
This seems to be fine for the application of handling coherences (in further work, we will
also investigate the possibility to add degeneracies in the way presented by Harpaz [5]). The
advantage is that we can then consider type-valued contravariant diagrams over the direct
category ∆+, the category of finite ordinals and strictly increasing functions. In particular, we
can consider Reedy fibrant diagrams, which can be described inductively (see [8]). This also
ensures that it is reasonable to ask for strict semisimplicial laws.

In detail, let us write Type for the (strict, non-internally formulated) category of types and
functions. Let D : ∆op

+ → Type be a Reedy fibrant functor. Define SpD : ∆op
+ → Type to be the
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nerve or spine functor of D, with SpDn :≡ D1 ×D0
. . .×D0

D1. Borrowing the usual terminology,
we can say that D is a semi-Segal type if the canonical fibrations Dn � SpDn are all equivalences.
We can then show that D is a semi-quasicategory if and only if it is a semi-Segal type (essentially
by the same argument as exhibited in [6]).

Let us outline some examples of ∞-semicategories. First, consider any type A, and the
diagram ∆op

+ → Type which is constantly A. In [6], a fibrant replacement of this diagram is
constructed explicitly. This yields indeed an ∞-semicategory, called the equality semisimplicial
type EA in [6]. Not surprisingly, it fulfils the stronger property of being an ∞-semigroupoid.

Second, consider the family D : N → Type, with D0 :≡ U (i.e. elements are small
types), D1 :≡ Σ (X0, X1 : U) . X0 → X1 (pairs of types and a function between them), D2 :≡
Σ (X0, X1, X2 : U) . (X0 → X1)× (X1 → X2) (a chain X0 → X1 → X2 of types), and so on; in
general, Dn are chains of length n. D can be completed to a functor ∆op

+ → Type. Exactly as
before, we can then take a Reedy fibrant replacement of this functor which, by construction, is
a semi-Segal type. It corresponds to the ∞-semicategory of types and we call it TYPE.

In the sketched situation, we are lucky: completing the family D : N → Type to an
actual functor from ∆op

+ is straightfoward as associativity of function composition holds strictly.
Unfortunately, not all ∞-semicategories of interest can be dealt with in this fashion, since a
similar construction would yield a family of types D that cannot be regarded as a strict functor
in any obvious way. This already happens in the case of pointed types, where the analogous
approach would be to start with chains of pointed types and pointed maps. However, we can
instead consider chains of types and functions (as before) and a point only in the first type of
the chain. This is an equivalent representation which carries a strict structure, giving rise to the
∞-semicategory PTYPE.

From the basic ingredients TYPE and PTYPE, and the fibration PTYPE � TYPE, we can
construct more sophisticated examples. The simplest interesting example is taking the local
exponential of PTYPE with itself in context TYPE, which leads essentially to algebras over
the identify functor. This way, we hope to achieve a reasonably theory of ∞-semicategories in
homotopy type theory which can then also be used to treat coherences in a principled way.

References

[1] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk
completion. Mathematical Structures in Computer Science (MSCS), pages 1–30, Jan 2015.

[2] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, and Fredrik Nordvall Forsberg. Towards a
theory of higher inductive types. Presentation at TYPES’15, Tallinn, Estonia, 20 May 2015.

[3] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory with
strict equality. ArXiv e-prints, April 2016.

[4] James Cranch. Concrete categories in homotopy type theory. ArXiv e-prints, Nov 2013.

[5] Yonatan Harpaz. Quasi-unital ∞–categories. Algebraic & Geometric Topology, 15(4):2303–2381,
2015.

[6] Nicolai Kraus. The general universal property of the propositional truncation. In 20th International
Conference on Types for Proofs and Programs (TYPES 2014), LIPIcs vol. 39, pages 111–145, 2015.

[7] Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types, 2013. Unpub-
lished note, ncatlab.org/homotopytypetheory/files/hit-semantics.pdf.

[8] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Structures
in Computer Science, pages 1–75, Jan 2015.

[9] Vladimir Voevodsky. A simple type system with two identity types, 2013. Unpublished note.

2

http://ncatlab.org/homotopytypetheory/files/hit-semantics.pdf

