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This note presents work in progress on representing partial computations in type theory.
We define a monad −⊥ : Set → Set.1 This monad is a pointed ω-CPO, and can be used to
solve recursive equations: given an ω-continuous function f : (A → B⊥) → (A → B⊥) we can
construct a function fix (f) : A→ B⊥ satisfying fix (f) = f(fix (f)).

Capretta (2005) gave a similar construction using setoids, but setoids are arguably awkward
to work with, so our aim is to avoid them. A natural idea is to use quotient types, as suggested
by Capretta et al. (2005) and worked out in more detail by Chapman et al. (2015): First define
the delay monad Delay : Set → Set coinductively by the constructors η : A → Delay(A) and
later : Delay(A) → Delay(A). Then one can, for instance, define the least value ⊥ : Delay(A)
as the solution to the guarded equation ⊥ = later(⊥). However, the delay monad distinguishes
computations that proceed with different speed (different number of later constructors). This
can be remedied by quotienting the delay monad by an equivalence relation corresponding to
weak bisimilarity. There are a number of ways to define this relation, for instance the following
one (Capretta, 2005): First define a relation ↓ : A⊥ → A → Prop, where p ↓ a means that p
terminates with the value a, inductively by η(a) ↓ a and p ↓ a→ later(p) ↓ a. Weak bisimilarity
≈ : Delay(A) → Delay(A) → Prop can then be defined by p ≈ q := Πa:A(p ↓ a ↔ q ↓ a),
and A⊥ as the quotient type Delay(A)/≈. However, Chapman et al. (2015) noticed a potential
problem with this construction: it seems to be hard or impossible to prove that −⊥ is a monad
in (some variant of) type theory. They also showed that −⊥ really is a monad under the
assumptions of countable choice and propositional extensionality.

Our aim is to show that a partiality monad can be constructed without having to introduce
countable choice. We observe, as did Chapman et al. (2015), that the situation is reminiscent
of the situation with the Cauchy reals. If the Cauchy reals are defined as a quotient, then it is
for instance impossible to prove a specific form of the statement that every Cauchy sequence
of Cauchy reals has a limit using IZFRef , a constructive set theory without countable choice
(Lubarsky, 2007). The Univalent Foundations Program (2013, Section 11.3) circumvents this
problem by defining the Cauchy reals as “the free complete metric space generated by Q”,
using a higher inductive-inductive type that mutually defines the real numbers—including an
inclusion of rational numbers and a limit construction—and a certain relation. We note that this
definition of the real numbers forms a set and that the relation is propositional, so the higher
inductive-inductive type used is a quotient inductive-inductive type (Altenkirch and Kaposi,
2016).

Using a similar approach we mutually define A⊥ : Set and v : A⊥ → A⊥ → Prop, where
v represents information ordering, as a quotient inductive-inductive type:

⊥ : A⊥

η : A→ A⊥⊔
: Πf :N→A⊥(Πn:Nf(n) v f(n+ 1))→ A⊥
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To improve readability we present the constructors for v using inference rules:2

d v d ⊥ v d

⊔
(f, p) v d

Πn:Nf(n) v d
Πn:Nf(n) v d⊔

(f, p) v d

These rules say that the relation is reflexive with ⊥ as the least element, and that
⊔

(f, p) has
a given upper bound iff the sequence f has the same upper bound. We add two constructors
for equality, one which turns v into a partial order (transitivity can be proved), and one which
makes v propositional (one can then prove that A⊥ is a set):

d v d′ d′ v d
d = d′

p, q : d v d′

p = q

We have showed—without assuming countable choice—that −⊥ is a monad. The construc-
tion and this proof have been implemented in Agda,3 using an experimental rewriting feature
developed by Andreas Abel and Jesper Cockx to support higher inductive-inductive types.

However, we have not yet verified that this monad is correctly defined. Together with Paolo
Capriotti and Nicolai Kraus we have ruled out the risk that the monad is trivial by proving
that ⊥ 6= η(x) (in Agda, using the univalence axiom), but we have not yet established a firm
connection between the construction presented here and the quotiented delay monad mentioned
above.

Further experiments might reveal whether our construction provides a good basis for the
development of a theory of partial functions within type theory.
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2Because v is propositional we omit the constructor names.
3With the K rule turned off, and with minor differences from this presentation. The source code can at the

time of writing be found via Danielsson’s personal web page (http://www.cse.chalmers.se/~nad/).
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