On self-interpreters for Godel’s System T’

Andrej Bauer

University of Ljubljana, Slovenia
Andrej.Bauer@andrej.com

In defiance of the received wisdom that a total programming language cannot have a self-
interpreter, Brown and Palsberg [3] implemented a self-interpreter for System F,,, which is a
strongly normalizing typed A-calculus and thus certainly a total language. In order to avoid the
trivial self-interpreter they imposed certain constraints. I show that under the same constraints
already Godel’s System T has a self-interpreter (Theorem 5). The construction is trivial, which
makes one think that something is at fault with the notion of self-interpreter used by Brown
and Palsberg. However, I show that there cannot be a significant improvement (Corollary 6) in
the sense that the type of source codes must be at least as complex as the type of the programs
they encode. I conclude by suggesting a definition of self-interpreter which is satisfied by Brown
and Palsberg’s interpreter but not by the one constructed in Theorem 5.

We work with the simply typed A-calculus [2, §A.1], and in particular with Gédel’s T, which
is an extension of the simply typed A-calculus with a ground type of natural numbers nat and
primitive recursion at each type, see [2, §A.2] and [1]. It is strongly normalizing [1, §4.3] and
expressive enough to manipulate syntax through Goédel encodings. We write Prg(7) for the set
of all closed expressions (programs) of type 7.

Definition 1. A typed self-interpreter is given by a type v of (source) codes, and for each
type T a quoting function "-", : Prg(7) — Prg(v) and an interpreter u, € Prg(v — 7) such that
u, "el; =g e for all e € Prg(7).

Note that the quoting functions need not be A-definable, i.e., there may be no programs q,
such that "e; =g q, e. The following theorem is the justification for the popular opinion that
total languages do not have self-interpreters.

Theorem 2. If a A-calculus has a self-interpreter then it has fized-point operators at all types.

The theorem can be inverted: a simply typed A-calculus with natural numbers and fixed-point
operators has a self-interpreter, as was affirmed by Longley and Plotkin [4, Prop. 6].

Corollary 3. System T does not have a self-interpreter.
Proof. In System T successor succ : nat — nat has no fixed points. O

The corollary holds for other kinds of calculi, as long as they posses endomaps without fixed
points, which is typical of strongly normalizing calculi. To obtain a self-interpreter for System T’
we thus need to relax the definition of self-interpreters. The following one is fashioned after
Brown and Palsberg [3]. We write n(e) for the normal form of an expression e, and g(e) for its
Godel code, which is a suitable encoding of e by a number. We write n for the numeral that
represents n € N.

Definition 4. A weak self-interpreter is given by, for each type 7, a type of (source) codes O,
a quoting function -7, : Prg(7) — Prg(O7), and an interpreter u, : Prg(O7 — 7) such that
u, e =g e for all e € Prg(7). Such an interpreter is strong when for every type 7, the quoting
function ™7 is (1) normal: e, is B-normal for all e € Prg(7), and (2) acceptable: there is
g, : O7 — nat such that g, "e™, = g(e) for all e € Prg(7).



On self-interpreters for Godel’s System T Andrej Bauer

Normality expresses the idea that codes should be values and acceptability that the syntax
of an expression is discernible from its code. Brown and Palsberg also require injectivity of
the quoting function, which follows from our definition because g is injective. They do not
explicitly postulate acceptability, although they provide programs that extract the syntax of
an expression from its code.

A strong self-interpreter cannot have a trivial quoting function "e™, = e because codes must
be B-normal, while injectivity of -7, prevents coding by f-normal forms "e™; = n(e).

Theorem 5. System T has a strong Brown-Palsberg self-interpreter.
Proof. Define O7 = nat x 7, "e. = (g(e),n(e)), u, =snd, and g, = fst. O

It is clear that the same proof applies to any calculus that has binary products, natural numbers,
and any notion of normal form, such as System Fi,,.

The proof of Theorem 5 abuses the fact that Brown-Palsberg interpreters allow codes to be
as complex as the programs they encode. Theorem 2 prevents us from using a fixed type of
codes, but perhaps O7 can at least be less complex than 77 We show that this is not possible for
the standard notion of level defined inductively as lev(nat) = 0, lev(c x 7) = max(lev(o), lev(T)),
and lev(c — 7) = max(1 + lev(c), lev(7)). That is, lev(7) gives the deepest nesting of — to the
left in 7.

Theorem 6. A weak self-interpreter for System T satisfies lev(O7) > lev(T) for every type T.

The self-interpreter for F,, given by Brown and Palsberg has important structural properties
that Definition 4 fails to capture. For instance, their encoding of types commutes with substitu-
tion [3, Thm. 5.2] and is a congruence with respect to type equality [3, Thm. 5.3]. In the original
work [5] on meta-circularity Pfenning and Lee called such phenomena reflezivity. Unfortunately
they spoke of it at an informal level and did not provide a definition. A promising possibility,
which thwarts the proof of Theorem 5 but allows Brown and Palsberg’s construction, is to
amend the definition of weak interpreters by requiring a term app, . : O(c — 7) — Do — O7
such that apP,, - Te1'or "€2's =g "e1 ex’'r. This way we get conditions that correspond to
the modal laws of necessity. Unfortunately, at present I do not know whether System T" has a
self-interpreter satisfying the above conditions and the acceptability condition from Definition 4.

Acknowledgment I thank Alex Simpson for helpful discussions and pointers to the literature.

References

[1] Jeremy Avigad and Solomon Feferman. Chapter V: Gédel’s Functional (“Dialectica”) Interpreta-
tion. In Samuel R. Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic and the
Foundations of Mathematics, pages 337-405. Elsevier, 1998.

[2] H.P. Barendregt. The Lambda Calculus: Its Syntaz and Semantics, volume 103 of Studies in Logic
and the Foundations of Mathematics. College Publications, 1984.

[3] Matt Brown and Jens Palsberg. Breaking through the normalization barrier: A self-interpreter for
F-omega. In Principles of Programming Languages (POPL), January 2016.

[4] John Longley and Gordon Plotkin. Logical full abstraction and pcf. In Tbilisi Symposium on
Language, Logic and Computation. SiLLI/CSLI, pages 333-352. SiLLI/CSLI, 1996.

[5] Frank Pfenning and Peter Lee. Metacircularity in the polymorphic A-calculus. Theoretical Computer
Science, 89(1):137-159, 1991.



