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Abstract

Intersection types capture deep semantic properties of λ-terms such as normalization
and were subject to extensive study for decades [2]. Due to their expressive power, in-
tersection type inhabitation (given a type, does there exist a term having the type?) is
undecidable in the standard intersection type system BCD [1].

Urzyczyn showed relatively recently [6] that restricted to rank 2 intersection type in-
habitation becomes exponential space complete and is undecidable for rank 3 and up.
Here, rank(τ) = 0 if τ is a simple type, rank(σ → τ) = max(rank(σ) + 1, rank(τ)) and
rank(σ ∩ τ) = max(1, rank(σ), rank(τ)) otherwise. Later, Salvati et al. discovered the
equivalence of intersection type inhabitation and λ-definability [5], which further improved
our understanding of the expressiveness of intersection types.

One can take several routes in order to track the reason for undecidability of intersection
type inhabitation (abbreviated by IHP, resp. IHP3 for rank 3). In [2] the following reduc-
tion is performed: EQA ≤ ETW ≤WTG ≤ IHP, where EQA is the emptiness problem for
queue automata, ETW is the emptiness problem for typewriter automata and WTG is the
problem of determining whether one can win a tree game. A different route taken in [6]
performs the following reduction: ELBA ≤ SSTS1 ≤ HETM ≤ IHP3, where ELBA is the
emptiness problem for linear bounded automata, SSTS1 is the problem of deciding whether
there is a word that can be rewritten to 1s in a simple semi-Thue system and HETM is the
halting problem for expanding tape machines. Alternatively, following the route of [5] via
semantics, the following reduction can be performed: WSTS ≤ LDF ≤ IHP3, where WSTS
is the word problem in semi-Thue systems and LDF is the λ-definability problem. Each of
these routes introduces its own machinery that may distract from the initial question. As
a result, it is challenging to even give examples of particularly hard inhabitation problem
instances, or distinguish necessary properties on a finer scale than the rank restriction. We
pinpoint the reason for undecidability by performing a direct reduction from the halting
problem for Turing machines to intersection type inhabitation. In particular, we show
how arbitrary Turing machine computations can be directly simulated using proof search.
The main benefit of the presented approach is its accessibility and simplicity. It can be
used to inspect properties of intersection type inhabitation or related systems on a more
fine-grained scale than that of rank. Additionally, simulating Turing machine computa-
tions by proof search may provide new insights into the line of work, where proof search
is regarded as the execution of a logic programming language used for code synthesis [4].
In order to simulate a Turing machine computation, we construct an intersection type τ?
that exactly captures individual properties of a Turing machine. Due to the structure of
τ?, the execution of a proof search algorithm [3] necessarily consists of two phases. During
the first phase the simultaneous set of type judgments (used by the algorithm) is expanded
to provide room for the simulation of a Turing machine computation. During the second
phase the simultaneous set of type judgments is transformed according to the transition
function of the Turing machine until the final state is reached. As a result, τ? is inhabitable
iff the simulated Turing machine halts. Since our construction is more concise than existing
approaches taking no detours, we believe that it is valuable for a better understanding of
the expressiveness of intersection type inhabitation.
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For the sake of completeness, we outline the construction of τ?. Let M = (Σ, Q, q0, qf , δ)
be a TM. Fix the set of type constants C = Σ∪̇{l, r, •}∪̇{〈q, a〉 | q ∈ Q, a ∈ Σ}∪̇{◦, ∗,#, $}.
Note that ∈ Σ is the space symbol. We define the following types:

σf =
⋂
c∈Σ

(c ∩ 〈qf , c〉)

for each t = ((q, c) 7→ (q′, c′,+1)) ∈ δ

σt =
⋂
a∈Σ

(• → a→ a) ∩ (l→ c′ → 〈q, c〉) ∩
⋂
a∈Σ

(r → 〈q′, a〉 → a)

for each t = ((q, c) 7→ (q′, c′,−1)) ∈ δ

σt =
⋂
a∈Σ

(• → a→ a) ∩ (r → c′ → 〈q, c〉) ∩
⋂
a∈Σ

(l→ 〈q′, a〉 → a)

σ∗ = ((• → ◦)→ ◦) ∩ ((• → ∗)→ ∗) ∩ ((l→ ∗)→ #) ∩ ((r → #) ∩ (• → $)→ $)

σ0 = ((• → 〈q0, 〉)→ ◦) ∩ ((• → )→ ∗) ∩ ((l→ )→ #) ∩ ((r → )→ $)

τ? = σ0 → σ∗ → σf → σt1 → . . .→ σtk → (l→ ◦) ∩ (r → #) ∩ (• → $)

where δ = {t1, . . . , tk}

Each of the above types represents one particular feature of M . To provide some intuition:

• l and r link neighboring tape cells.

• ◦, $ and # indicate the first, last and next to the last tape cell during tape expansion.

• 〈q, a〉 represents that M is at the position reading a in state q.

• σf recognizes whether an accepting state is reached.

• σt transforms the state according to δ.

• σ∗ represents tape expansion.

• σ0 initializes M to the state q0 and the empty tape.

• τ? is inhabited iff M accepts the empty word.
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