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Abstract

In univalent foundations, it is known that the law of excluded middle allows one to define a family

of functions fX : X → X that is not the identity function on the booleans. We show that the converse

holds as well: given such a function, we derive the law of excluded middle.

Suppose we are given a polymorphic function

fX : X → X,

where X : U is its type parameter.
If this were a term in a language such as System F, then parametricity tells us that it must

be equal to the identity function idX for every type X. But parametricity is a metatheoretical
framework: it gives properties about the terms of a language, rather than internally stating
properties of elements.

Internal to univalent foundations, if we have LEM, then there exists a polymorphic function
f such that f2 (where 2 is the type of booleans) is not the identity function [2, exercise 6.9].
Since LEM is consistent with univalent foundations, this means that there cannot be an internal
proof that a polymorphic function fX : X → X is equal to the identity.

We prove that, in univalent foundations, LEM is precisely what is needed to get a function
family not equal to the identity on 2: on the one hand, we already know that LEM gives us
such a function; on the other hand, we have the following converse.

Theorem 1. If there is a function f : ΠX:UX → X with f2 6= id2, then LEM holds.

Alternatively, to confine the amount of univalence needed, we can work in the setting of
intensional type theory with function extensionality (but without full univalence), and assume
that f is extensional in the sense that it is invariant under equivalences on the type X it acts
on.

The idea of the proof is that we define a type 3P , which, depending on whether P holds,
may or may not be equivalent to 2. We then evaluate f at the type 3P ' 3P (rather than 3P

itself), and prove P + ¬P using that evaluation.
This proof has been formalized [1] in Agda using the HoTT library.

Proof. Without loss of generality, we may assume that f2(02) 6= 02.
To prove LEM, let P be an arbitrary proposition. We need to prove P + ¬P .
We will consider a type with three points, where we identify two points depending on whether

P holds. Formally, this is the quotient of a three-element type, where the relation between two
of those points is the proposition P . This quotient can be constructed conveniently as

3P := ΣP + 1,

where ΣP is the suspension of P 1. The two points of the suspension are called N and S, and
the identity path (if it exists) between those points is called merid(p) : N = S, with p : P .

Recall the following about suspensions.

1The suspension of a type is not generally a quotient, because it is not generally a set: we use the fact that
P is a proposition here.
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• By induction, we can define a map

swap : ΣP → ΣP

that sends N to S and vice versa.

• By induction, we can define a map extract : N =ΣP S→ P , and this can be generalized to
a map

extract′x : x =ΣP swap(x)→ P.

Notice that if we have P , then the suspension is contractible, so 3P ' 2, and also (3P '
3P ) ' 2.

Define
g := f3P'3P

(ide3P
) : 3P ' 3P ,

where ide3P
is the equivalence 3P ' 3P given by the identity function on 3P . We will see g

both as an equivalence and as a function 3P → 3P .
Now we do case analysis on g(inr(?)). Notice that this case analysis is simply an instance

of the induction principle for sum types. In particular, we do not require decidable equality of
3P (which would already give us P +¬P , which is exactly what we are trying to prove). When
analyzing the case inr(t) : 3P , with t : 1, we are free to specialize to t = ? since 1 is contractible.

g(inr(?)) = inr(?): Assume that P holds. Then by transporting the witness of f2(02) 6= 02 along
an equivalence that identifies 02 with ide3P

, we get that g 6= ide3P
. However, since 3P ' 2

and g has a fixed point inr(?), we can deduce that g = ide3P
, which is a contradiction.

g(inr(?)) = inl(x): We do further case analysis on g(inl(x)).

g(inl(x)) = inr(?): We do further case analysis on g(inl(swap(x))).

g(inl(swap(x))) = inr(?): Since we now have

g(inl(x)) = inr(?) = g(inl(swap(x)))

and since g is an equivalence, we can use extract′x to get P .

g(inl(swap(x))) = inl(y): Assume P , in which case x = swap(x). Hence inr(?) = inl(y)
which is a contradiction.

g(inl(x)) = inl(y): Assume P , in which case inl(x) = inl(y). But we now have

g(inr(?)) = inl(x) = inl(y) = g(inl(x)).

So since g is an equivalence, this yields inr(?) = inl(x), which is a contradiction.
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