
Towards a Logic of Multi-Party Sessions
Marco Carbone

IT University of Copenhagen
Copenhagen

Denmark
maca@itu.dk

Fabrizio Montesi
University of Southern Denmark

Odense
Denmark

famontesi@gmail.com

Carsten Schürmann
IT University of Copenhagen

Copenhagen
Denmark

carsten@itu.dk

Nobuko Yoshida
Imperial College

London
United Kingdom

n.yoshida@imperial.ac.uk

A two-party computation corresponds to the interaction of two processes and a multi-party computation
corresponds therefore to the interaction of multiple (three or more) processes. The process algebra
community has developed a thorough understanding of multi-party computation through a mechanism
called global type that determines a sequential order of the individual send and receive actions among the
participating parties.

Viewed from the vantage point of logic, we observe that two-party computations are also well
understood through a Curry-Howard correspondence that was first pointed out by Caires and Pfenning in
the setting of intuitionistic logic [CP10] and then by Wadler in the setting of classical logic [Wad14]. In
the binary case, two processes form a two-party computation if their respective types are dual to each
other. Inspired by this, we show how to generalize the notion of duality to coherence, which allows us to
capture the essence of multi-party computations and establish a Curry-Howard correspondence between
multi-party sessions and an extension of linear logic with coherence proofs. This paper is based on prior
work in [CMSY15].

In the reminder of the paper, we illustrate the main contributions of this work using the classical
2-buyer protocol [HYC08] as example. Two buyers B1 and B2 attempt to buy a book together from seller
S. B1 sends the title of the book that he intends to purchase. The seller S replies to both, B1 and B2, with
a quote. B1 then sends a message to B2 about how much money he is willing to contribute to the purchase,
leaving B2 with the decision either to contribute the remaining funds and to complete the purchase or to
not buy the book at all. Formally, we write:

1. B1 → S : 〈str〉; S → B1 : 〈int〉; S → B2 : 〈int〉; B1 → B2 : 〈int〉;
2. B2 → S : N (B2 → S : 〈addr〉;end, end)

(1)

Implicitly, for the purpose of this example, we assume that all communication proceeds through
a single channel. Its type depends on the role of each party. When one sends, another receives. The
following are the types of the shared channels for each role expressed in Wadler’s CP. To be consistent
with [Wad14] and in a slight deviation from [CDCYP15], we use ⊗ to type outputs and O to type inputs.

B1: str⊗ int O int⊗ end

B2: int O int O
(
(addr⊗ end)⊕ end

)
S: str O int⊗ int⊗

(
(addr O end) N end

) (2)

Above, each formula in classical linear logic (CLL) states how x is used by each process. For instance, B1
outputs (⊗) a string, receives (O) an integer, sends another integer and eventually terminates (end).

The motivating observation of this work is that CLL is not general enough to express the composition
of three or more processes sharing one channel, since the cut-rule can only compose two processes P and
Q on one single shared channel x with a compatible types and A and A⊥ and not on three.

P ` ∆,x :A Q ` ∆′,x :A⊥

(νx :A)(P | Q) ` ∆,∆′
Cut

1

maca@itu.dk
famontesi@gmail.com
carsten@itu.dk
n.yoshida@imperial.ac.uk

easychair: Running title head is undefined. Carbone, Montesi, Schürmann, Yoshida

As a solution to this challenge, we propose to annotate the connectives with roles as the partner of the
communication. For details, consult [CDCYP15].

B1: str⊗S int OS int⊗B2 end

B2: int OS int OB1
(
(addr⊗S end)⊕S end

)
S: str OB1 int⊗B1 int⊗B2

(
(addr OB2 end) NB2 end

) (3)

Annotations identify the dual role of each action, e.g., the usage for B1 now reads: send a string to S (⊗S);
receive an integer from S (OS); send an integer to B2 (⊗B2); and, terminate (end). This trick allows
us to generalize the standard notion of de Morgan duality that is defined between two processes of type
A and A⊥, to coherence between a set of processes {Ai}i. Coherence is expressed using the judgment
G � p1 :A1, . . . , pn :An. Here, G is the global type, each pi denotes a role of type Ai. Coherence is defined
by the following rules.

G � p :A, q :C G′ � Θ, p :B, q :D
p → q : 〈G〉;G′ � Θ, p :A⊗q B, q :C O pD

O⊗
end � p :1,q1 :⊥, . . . ,qn :⊥ 1⊥

G1 � Θ, p :A,q :C G2 � Θ, p :B,q :D
p → q : N (G1,G2) � Θ, p :A⊕q B,q :C Np D

⊕N
G � p :A,q :B

?p → !q : 〈G〉 � p :?A,q :!B !?

Building on coherence, we generalize the cut-rule Cut to a multi-cut rule MCut that defines the type
of a multi-party computation by combining multiple processes Pi.

P1 ` Γ1,xp1 :A1 . . . Pn ` Γn,xpn :An

(νx :G)(P1 | . . . | Pn) ` Γ1, . . . ,Γn
MCut, where G � p1 :A⊥1 , . . . , pn :A⊥n

In conclusion, this work presents to our knowledge the first formulation of a logic of multi-party
sessions. The logic is a conservative extension over Wadler’s CP, it is expressive as this example shows,
and it is sound as cut-elimination and multi-cut elimination hold.

References
[CDCYP15] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global progress

for dynamically interleaved multiparty sessions. MSCS, 760:1–65, 2015.
[CMSY15] Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty session

types as coherence proofs. In 26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015, pages 412–426, 2015.

[CP10] Luı́s Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
pages 222–236, 2010.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In Proc.
of POPL, volume 43(1), pages 273–284. ACM, 2008.

[Wad14] Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418, 2014.

2

