FLABloM: Functional linear algebra with block matrices

Adam Sandberg Eriksson and Patrik Jansson

Chalmers University of Technology, Sweden {saadam,patrikj}@chalmers.se

In [1] Bernardy & Jansson used a recursive block formulation of matrices to certify Variant's [4] parsing algorithm. Their matrix formulation was restricted to matrices of size $2^n \times 2^n$ and this work extends the matrix formulation to allow for all sizes of matrices and applies similar techniques to algorithms that can be described as transitive closures of semi-rings of matrices with inspiration from [2] and [3].

We define a hierarchy of ring structures as Agda records. A semi-near-ring for some type s needs an equivalence relation \simeq_s , a distinguished element 0_s and operations addition $+_s$ and multiplication \cdot_s . Our semi-near-ring requires that 0_s and $+_s$ form a commutative monoid (i.e. $+_s$ commutes and 0_s is the left and right identity of $+_s$), 0_s is the left and right zero of \cdot_s , $+_s$ is idempotent ($\forall x \to x +_s x \simeq_s x$) and \cdot_s distributes over $+_s$.

For the semi-ring we extend the semi-near-ring with another distinguished element 1_s and proofs that \cdot_s is associative and that 1_s is the left and right identity of \cdot_s .

Finally we extend the semi-ring with an operation *closure* that computes the transitive closure of an element of the semi-ring (c is the closure of w if $c \simeq_s 1_s +_s w \cdot_s c$ holds), we denote the closure of w with w^* .

We use two examples of semi-rings with transitive closure: (1) the Booleans with disjunction as addition, conjunction as multiplication and the closure being true; and (2) the natural numbers (N) extended with an element ∞ , we let $0_s = \infty$, $1_s = \theta$, min plays the role of $+_s$, addition of natural numbers the role of \cdot_s and the closure is 0.

Matrices To represent the dimensions of matrices we use a type of non-empty binary trees:

```
data Shape : Set where L : Shape B : (s_1 \ s_2 : Shape) \rightarrow Shape
```

This representation follows the structure of the matrix representation more closely than natural numbers and we can easily compute the corresponding natural number:

```
toNat : Shape \rightarrow \mathbb{N}; toNat L = 1; toNat (B l r) = toNat l + toNat r
```

while the other direction is slightly more complicated because we want a somewhat balanced tree and we have no representation for 0.

Matrices are parametrised by the type of elements they contain and indexed by a *Shape* for each dimension. We use a datatype M with four constructors: One, Row, Col, and Q. The first One lifts an element into a 1-by-1 matrix:

Row and column matrices are built from smaller matrices which are either 1-by-1 matrices or further row respectively column matrices

$$\begin{array}{lll} \textit{Row} \,:\, \{\, c_1 \,\, c_2 \,:\, \textit{Shape} \,\} \,\rightarrow & \textit{M} \,\, a \,\, L \,\, c_1 \,\rightarrow \, \textit{M} \,\, a \,\, L \,\, c_2 \,\rightarrow \, \textit{M} \,\, a \,\, L \,\, (\textit{B} \,\, c_1 \,\, c_2) \\ \textit{Col} \,:\, \{\, r_1 \,\, r_2 \,:\, \textit{Shape} \,\} \,\rightarrow & \textit{M} \,\, a \,\, r_1 \,\, L \,\rightarrow \, \textit{M} \,\, a \,\, r_2 \,\, L \,\rightarrow \, \textit{M} \,\, a \,\, (\textit{B} \,\, r_1 \,\, r_2) \,\, L \end{array}$$

and matrices of other shapes are built from 2×2 smaller matrices

This matrix representation allows for simple formulations of matrix addition, multiplication, and as we will see also the transitive closure of a matrix.

Transitive closure In [3] Lehmann presents a definition of the closure on square matrices, $A^* = 1 + A \cdot A^*$: Given

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

the transitive closure of A is defined inductively as

$$A^* = \left[\begin{array}{ccc} A_{11}^* + A_{11}^* \cdot A_{12} \cdot \Delta^* \cdot A_{21} \cdot A_{11}^* & & A_{11}^* \cdot A_{12} \cdot \Delta^* \\ & \Delta^* \cdot A_{21} \cdot A_{11}^* & & \Delta^* \end{array} \right]$$

where $\Delta = A_{22} + A_{21} \cdot A_{11}^* \cdot A_{12}$ and the base case is the 1-by-1 matrix where we use the transitive closure of the element of the matrix: $[s]^* = [s^*]$.

We have encoded this definition of closure in Agda and implemented a constructive correctness proof using structural induction and equational reasoning. The full development of around 2500 lines of literate Agda code (including this abstract) is available on GitHub (https://github.com/DSLsofMath/FLABloM).

Conclusions We have presented an algebraic structure useful for (block) matrix computations and implemented and proved correctness of transitive closure. Compared to [1] our implementation handles arbitrary matrix dimensions but is restricted to semi-rings. Future work would be to extend the proof to cover both arbitrary dimensions and the more general semi-near-ring structure which would allow parallel parsing as an application.

References

- [1] Jean-Philippe Bernardy and Patrik Jansson. Certified context-free parsing: A formalisation of Valiant's algorithm in Agda. *Logical Methods in Computer Science*, 2016. Accepted 2015-12-22 for publication in LMCS. Available from http://arxiv.org/abs/1601.07724.
- [2] Stephen Dolan. Fun with semirings: A functional pearl on the abuse of linear algebra. In *Proceedings* of the 18th ACM SIGPLAN International Conference on Functional Programming, ICFP '13, pages 101–110, New York, NY, USA, 2013. ACM.
- [3] Daniel J. Lehmann. Algebraic structures for transitive closure. *Theoretical Computer Science*, 4(1):59–76, 1977.
- [4] L.G. Valiant. General context-free recognition in less than cubic time. J. of computer and system sciences, 10(2):308–314, 1975.