
FLABloM: Functional linear algebra with block matrices

Adam Sandberg Eriksson and Patrik Jansson

Chalmers University of Technology, Sweden
{saadam,patrikj}@chalmers.se

In [1] Bernardy & Jansson used a recursive block formulation of matrices to certify Variant’s
[4] parsing algorithm. Their matrix formulation was restricted to matrices of size 2n × 2n and
this work extends the matrix formulation to allow for all sizes of matrices and applies similar
techniques to algorithms that can be described as transitive closures of semi-rings of matrices
with inspiration from [2] and [3].

We define a hierarchy of ring structures as Agda records. A semi-near-ring for some type s
needs an equivalence relation 's, a distinguished element 0s and operations addition +s and
multiplication ·s. Our semi-near-ring requires that 0s and +s form a commutative monoid (i.e.
+s commutes and 0s is the left and right identity of +s), 0s is the left and right zero of ·s, +s

is idempotent (∀ x → x +s x 's x ) and ·s distributes over +s.
For the semi-ring we extend the semi-near-ring with another distinguished element 1s and

proofs that ·s is associative and that 1s is the left and right identity of ·s.
Finally we extend the semi-ring with an operation closure that computes the transitive

closure of an element of the semi-ring (c is the closure of w if c 's 1s +s w ·s c holds), we
denote the closure of w with w∗.

We use two examples of semi-rings with transitive closure: (1) the Booleans with disjunction
as addition, conjunction as multiplication and the closure being true; and (2) the natural
numbers (N) extended with an element ∞, we let 0s = ∞, 1s = 0 , min plays the role of +s,
addition of natural numbers the role of ·s and the closure is 0.

Matrices To represent the dimensions of matrices we use a type of non-empty binary trees:

data Shape : Set where
L : Shape
B : (s1 s2 : Shape)→ Shape

This representation follows the structure of the matrix representation more closely than natural
numbers and we can easily compute the corresponding natural number:

toNat : Shape → N; toNat L = 1 ; toNat (B l r) = toNat l + toNat r

while the other direction is slightly more complicated because we want a somewhat balanced
tree and we have no representation for 0.

Matrices are parametrised by the type of elements they contain and indexed by a Shape for
each dimension. We use a datatype M with four constructors: One, Row , Col , and Q . The
first One lifts an element into a 1-by-1 matrix:

data M (a : Set) : (rows cols : Shape)→ Set where
One : a → M a L L

Row and column matrices are built from smaller matrices which are either 1-by-1 matrices or
further row respectively column matrices



Functional linear algebra with block matrices Adam Sandberg Eriksson & Patrik Jansson

Row : {c1 c2 : Shape } → M a L c1 → M a L c2 → M a L (B c1 c2 )

Col : {r1 r2 : Shape } → M a r1 L→ M a r2 L→ M a (B r1 r2 ) L

and matrices of other shapes are built from 2 × 2 smaller matrices

Q : {r1 r2 c1 c2 : Shape } → M a r1 c1 → M a r1 c2 →
M a r2 c1 → M a r2 c2 →
M a (B r1 r2 ) (B c1 c2 )

This matrix representation allows for simple formulations of matrix addition, multiplication,
and as we will see also the transitive closure of a matrix.

Transitive closure In [3] Lehmann presents a definition of the closure on square matrices,
A∗ = 1 + A ·A∗: Given

A =

[
A11 A12

A21 A22

]
the transitive closure of A is defined inductively as

A∗ =

[
A∗

11 + A∗
11 ·A12 ·∆∗ ·A21 ·A∗

11 A∗
11 ·A12 ·∆∗

∆∗ ·A21 ·A∗
11 ∆∗

]
where ∆ = A22 + A21 · A∗

11 · A12 and the base case is the 1-by-1 matrix where we use the
transitive closure of the element of the matrix: [s]∗ = [s∗].

We have encoded this definition of closure in Agda and implemented a constructive cor-
rectness proof using structural induction and equational reasoning. The full development
of around 2500 lines of literate Agda code (including this abstract) is available on GitHub
(https://github.com/DSLsofMath/FLABloM).

Conclusions We have presented an algebraic structure useful for (block) matrix computations
and implemented and proved correctness of transitive closure. Compared to [1] our implemen-
tation handles arbitrary matrix dimensions but is restricted to semi-rings. Future work would
be to extend the proof to cover both arbitrary dimensions and the more general semi-near-ring
structure which would allow parallel parsing as an application.

References

[1] Jean-Philippe Bernardy and Patrik Jansson. Certified context-free parsing: A formalisation of
Valiant’s algorithm in Agda. Logical Methods in Computer Science, 2016. Accepted 2015-12-22 for
publication in LMCS. Available from http://arxiv.org/abs/1601.07724.

[2] Stephen Dolan. Fun with semirings: A functional pearl on the abuse of linear algebra. In Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages
101–110, New York, NY, USA, 2013. ACM.

[3] Daniel J. Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science,
4(1):59–76, 1977.

[4] L.G. Valiant. General context-free recognition in less than cubic time. J. of computer and system
sciences, 10(2):308–314, 1975.

2

https://github.com/DSLsofMath/FLABloM
http://arxiv.org/abs/1601.07724

