
An imperative calculus for unique access and immutability

(extended abstract)

Paola Giannini1, Marco Servetto2, and Elena Zucca3

1 Università del Piemonte Orientale, Italy
giannini@di.unipmn.it

2 Victoria University of Wellington, New Zealand
marco.servetto@ecs.vuw.ac.nz

3 DIBRIS, Università di Genova, Italy
elena.zucca@unige.it

We present a typed imperative calculus where it is possible to express and check aliasing and
immutability property directly on source terms, without introducing invariants on an auxiliary
structure which mimics physical memory. Indeed, continuing previous work [1, 5], we adopt
an innovative model for imperative languages which, differently from traditional models, is a
pure calculus. That is, execution is modeled by just rewriting source code terms, in the same
way lambda calculus models functional languages. Formally, this is achieved by a non standard
semantics of local variable declarations. When the expression defining a local variable x is
evaluated, x is not replaced by its value but, rather, the association from x to the value is kept1,
and plays the role of an association from a reference to a (right) value in the store.

For instance, in the following code, where we assume a class B with a field of type B:

mut B x = new B(y) mut B y = new B(x) y

the two declarations can be seen as a store where x denotes an object of class B whose field
is y, and conversely. Moreover, as shown in the example, variables (references) can be tagged
by modifiers which specify constraints on their behaviour. Indeed, in the recent years a massive
amount of research, see, e.g., [3, 4, 2] has been devoted to make programming with side-effects
easier to maintain and understand, notably using type modifiers to control state access. Here,
we consider two properties of references: (1) no mutation, that is, the reachable object graph
denoted by the reference cannot be modified, (2) no aliasing, that is, the reachable object graph
denoted by the reference cannot be saved as part of another object. We will use four modifiers
corresponding to the four combinations, that is: mutation and aliasing (mut), no mutation (imm
for immutable), no aliasing (lent), no mutation and no aliasing (read). In addition, we also
use a capsule type modifier, a subtype of both the mutable and immutable modifiers, which
allows mutable data to be passed and stored as internal state for an object without allowing
other access to the same data.

Store is not flat, as it usually happens in models of imperative languages. For instance in
the following example, where we assume a class D with an integer field, and a class A with two
fields of type B and D, respectively:

imm D z = new D(0)
imm A w = {
mut B x = new B(y)
mut B y = new B(x)
new A(x, z)

}
w

1As it happens, with different aims and technical problems, in cyclic lambda calculi.



the store associates to w a block introducing local declarations, that is, in turn a store. In this
representation, the fact that an object is not referenced from outside some enclosing object is
directly modeled by the block construct: for instance, the object denoted by y can only be
reached through w. Conversely, references from an object to the outside are directly modeled
by free variables: for instance, the object denoted by w refers to the external object z.2 In
other words, our calculus smoothly integrates memory representation with shadowing and α-
conversion.

M

C

I

L

R
Nodes:

M Mutable: alias, write

I Immutable: alias, no write

C Capsule: unique access
Reference used only once

L
Lent: no alias, write

R
Readable: no alias, no write

Arrows:
Subtype
Promotion

Figure 1: Type modifiers and their relationships

We outline now the type system. A type
T consists in a class name C decorated by a
modifier µ.

The subtyping relation is the reflexive and
transitive relation on types induced by

µC ≤ µ′ C if µ ≤ µ′

capsule ≤ mut ≤ lent ≤ read

capsule ≤ imm ≤ read

However, promotion rules can be used to
move the type of an expression against the
subtype hierarchy. More precisely: (1) Muta-
ble expressions can be promoted to capsule,
if mutable references are weakly locked, that
is, can only be used as lent. (2) Readable ex-
pressions can be promoted to immutable, if lent, readable, and mutable references are strongly
locked, that is, cannot be used at all. The situation is graphically depicted in Figure 1.

Our contribution includes the definition of the calculus with its type system, and proof of
soundness. In addition, we formally stated and proved that modifiers imply their expected
properties.

As a long term goal, we also plan to investigate (a form of) Hoare logic on top of our
model. We believe that the hierarchical structure of our memory representation should help
local reasoning.

References

[1] Andrea Capriccioli, Marco Servetto, and Elena Zucca. An imperative pure calculus. ICTCS 2015.

[2] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capabilities for
safe, fast actors. AGERE! 2015, pages 1–12. ACM Press.

[3] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. Uniqueness
and reference immutability for safe parallelism. OOPSLA 2012, pages 21–40. ACM Press.

[4] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bierhoff. A type system for borrowing
permissions. POPL 2012, pages 557–570. ACM Press.

[5] Marco Servetto and Elena Zucca. Aliasing control in an imperative pure calculus. APLAS 2015,
LNCS 9458, pages 208–228. Springer.

2Note that the object denoted by w is a capsule, since its only external reference is imm, whereas its mutable
state is encapsulated.


