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let r = ref [ ] in

r := [()];

true :: !r

Figure 1: unsound polymor-
phism and references [3]

The proposed talk describes submitted [7] and ongo-
ing [6] work about the interaction of computational effects
and predicative polymorphism. ML-style reference cells are
known to be hard to combine with polymorphism [11, 4, 14],
where a näıve type system is unsound (cf. Figure 1). The
working solution, the value restriction [18] and its relax-
ation [3], are ad-hoc and restrict the programmer unnec-
essarily. We reexamine this problem in the context of al-
gebraic effects [12] which extend the monadic account of computational effects [10] (e.g., the
state monad) with the syntactic operations involving them (e.g., memory look-up and update).
Bauer and Pretnar [2] use effect handlers, a generalisation of exception handlers that allows to
handle arbitrary user-defined algebraic effects, to structure impure functional code, in analogy
with monads [17]. The smooth integration of algebraic effects with polymorphism is surpris-
ing as effect handlers can implement local-state-like programming examples by manipulating
continuations (k below) [13]:

(with HST handle set true;

let y = get () in

return y) false

;∗ return true

where: HST := handler {
return x 7→ fun 7→ return x

get( ; k) 7→ fun s 7→ k s s

set(s′; k) 7→ fun 7→ k () s′}

In this work, we extend Bauer and Pretnar’s [2] calculus for algebraic effects and handlers
with Hindley-Milner polymorphism, in a standard way, without any value restriction:

• We add local effect signatures [8] Σ as fi-
nite mappings from operations op to pairs
of value types A, B, which we denote by
(op : A→ B) ∈ Σ.

• We extend types with type variables α.
• We introduce schemes ∀~α.A, where ~α de-

notes a finite set of |~α|-many type variables
ranged over by αi.

Our main result concerns the soundness of the type system w.r.t. the reduction relation ;:

Theorem (Safety). If ` c : A ! Σ holds, then either: (i) c ; c′ for some ` c′ : A ! Σ;
(ii) c = return v for some ` v : A; or (iii) c = op(v; y. c′) for some (op : Aop → Bop) ∈ Σ,
` v : Aop, and y : Bop ` c′ : A ! Σ. In particular, when Σ = ∅, evaluation will not get stuck
before returning a value.
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We use Leroy’s [9] benchmarks for evaluating the interaction of effects and polymorphism.
For example, if we extend the language with lists and bounded iteration, we can integrate effects
in polymorphic functions, as for any Σ:

let imp map = fun f xs 7→
with HST handle (

(
foldl

(
fun x 7→ set(f x :: get ())

)
() xs

)
; reverse(get ())

[ ] (∗ initial state ∗) in . . . (∗ imp map : ∀αβ.(α→ β ! Σ)→ (α list→ β list ! Σ) ! ∅ ∗)

These benchmarks also highlight the limited expressiveness of effect handlers — we do not
know how to implement, using effect handlers, even Leroy’s basic benchmark, in which we return
a newly allocated reference cell. The advantage is that, when trying to express the problematic
program in Figure 1, we cannot express the first line, and the type system forbids handling the
last two lines using the same state handler, as they refer to memory cells of different types.

A deeper soundness result comes from a denotational model for algebraic effects and poly-
morphism [6]. We modify Seely’s models of impredicative polymorphism [15] by separating
the fibred category of types into a fibred embedding of a fibred category of types into a fibred
category of schemes. The universal quantifier ∀, previously right adjoint to structural weaken-
ing, is now replaced by a relative right adjoint [16, 1] along the inclusion of types in schemes.
Using this relativisation, we can construct a parametric version of Harper and Mitchell’s [5]
set-theoretic models relative to a universal set U . To add computational effects to this model,
we construct a free fibred monad T∆ and prove the following theorem, which allows us to in-
terpret the calculus of algebraic effects and handlers, establishing soundness via a denotational
model.

Theorem. If U 6= ∅, then the canonical morphism T∆′∀∆.τ → ∀∆.T∆′×∆τ is invertible.
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