
Toward a computational reduction of dependent choice in
classical logic to system F

Étienne Miquey1,2 and Hugo Herbelin1

1 PiR2, INRIA, Institut de Recherche en Informatique Fondamentale, Université Paris-Diderot
hugo.herbelin@inria.fr, emiquey@pps.univ-paris-diderot.fr

2 IMERL, Universidad de la República, Montevideo

The dependent sum type of Martin-Löf’s type theory provides a strong existential elimination, which
allows to prove the full axiom of choice. The proof is simple and constructive:

ACA := λH.(λx. wit(Hx), λx. prf(Hx))
: ∀xA∃yBP(x, y)→ ∃ f A→B∀xAP(x, f (x))

where wit and prf are the first and second projections of a strong existential quantifier.
We present here a proof system which provides a proof-as-program interpretation of classical arith-

metic with dependent choice, together with a computational reduction of this calculus to an intuitionistic
one by means of a continuation-and-state-passing style translation. This system is a sequent-calculus
version of Herbelin’s dPAω calculus [5], who proposed a way of scaling up Martin-Löf proof to clas-
sical logic. The main ideas are first to restrict the dependent sum type to a fragment of the calculus
to make it computationally compatible with classical logic, second to represent a countable universal
quantification as an infinite conjunction. This allows to internalize into a formal system the realizability
approach [2, 4] as a direct proof-as-programs interpretation.

Informally, let us imagine that given H : ∀xA∃yBP(x, y), we have the ability of creating an infinite
term H∞ = (H0,H1, . . . ,Hn, . . .) and select its nth-element with some function nth. Then one might
wish that

λH.(λn. wit(nth n H∞), λn. prf(nth n H∞))

could stand for a proof for ACN. However, even if we were effectively able to build such a term, H∞
might contain some classical proof. Therefore two copies of Hn might end up being different according
to their context in which they are executed, and then return two different witnesses. This problem could
be fixed by using a shared version of H∞, say

λH. let a = H∞ in (λn. wit(nth n a), λn. prf(nth n a)) .

It only remains to formalize the intuition of H∞. We do this by a stream cofix0
f n(Hn, f (S (n))) iterated

on f with parameter n, starting with 0 :

ACN := λH.let a = cofix0
f n (Hn, f (S (n)) in

(λn. wit(nth n a), λn. prf(nth n a)) .

Whereas the stream is, at level of formulæ, an inhabitant of a coinductively defined infinite conjunction
ν0

Xn(∃P(0, y)∧X(n + 1)), we cannot afford to pre-evaluate each of its components, and thus have to use a
lazy call-by-value evaluation discipline. However, it still might be responsible for some non-terminating
reductions.

We intend to tackle the problem by progressively reducing the consistency of our system to the
normalization of Girard-Reynold’s system F. However, the sharing forces us to design a state-passing

1

Toward a computational reduction of dependent choice in classical logic to system F Herbelin and Miquey

style translation, whose small-step behaviour is quite far from the sharing strategy in natural deduction.
Besides, in order to get a proof of normalization through such a translation, we also need to guarantee
some typing properties in the source language and along the translation.

We presented a preliminary version of this work at TYPES 2015, where, as a first step, we managed
to develop a sequent-calculus version of dPAω, adapting the call-by-need version of the λ̄µµ̃-calculus de-
signed by Ariola et al. [1]. Incidentally, we had to ensure its compatibility with dependent types, since
the λ̄µµ̃-calculus [3] does not allow it directly. This led us to a type system annotated with a dependen-
cies list, and made us add delimited continuations to our language. Indeed, if we consider the case of a
proof λa.p : [a : A] → B cut with a context q · e where q : A and e : B[q]⊥⊥, it usually reduces to the
command 〈q | µ̃a.〈p | e〉〉 where p : B[a] and e : B[q]⊥⊥ are of incompatible types. While a annotation (to
link a and q) on the type system can solve this, there is no hope that a direct continuation-passing style
translation could be well-typed. Thus we introduced delimited continuations to turn it into a command
〈µt̂p.〈q | µ̃a.〈p | t̂p〉〉 | e〉 where p will not be cut with e until a is replaced by q.

The work is still in progress and in this talk, we propose to focus on the second step, that is the
design of a continuation-and-state-passing style translation that is correct with respect to types and
computation. As in [1], we benefited from Danvy’s methodology of semantic artifacts. We first derive a
small-step reduction system, to obtain a context-free abstract machine in which at each step a decision
over a command 〈p | e〉 can be made by examining either the proof p or the context e in isolation.
To do so, we separate the reductions rule in two different layers, which intuitively correspond to the
call-by-value and store-management for the first one, and to the core computations for the second one.

This small-step system almost gives us directly a state-passing style translation. The remaining dif-
ficulty is to type the store in the target language, which is a quite subtle problem due to the fact that the
store can be expanded in a non-linear way when unfolding a cofix. It is our hope that we could use the
second-order quantification of system F to encode the store and its expansion, which would provide us
with a proof of equiconsistency between classical arithmetic with dependent choice and system F.

Surprisingly, it turns out that our construction does not require any use of dependent choice at the
meta-level. If some previous works [2, 6] succeeded in giving a computational content to the axioms of
dependent choice or bar induction, this is to the best of our knowledge the first one that does not need
any meta-use of one of these axioms.

References
[1] Zena M. Ariola, Paul Downen, Hugo Herbelin, Keiko Nakata, and Alexis Saurin, Classical call-by-need se-

quent calculi: The unity of semantic artifacts, FLOPS 2012, Proceedings, 2012, pp. 32–46.
[2] Stefano Berardi, Marc Bezem, and Thierry Coquand, On the computational content of the axiom of choice, J.

Symb. Log. 63 (1998), no. 2, 600–622.
[3] Pierre-Louis Curien and Hugo Herbelin, The duality of computation, ICFP, 2000, pp. 233–243.
[4] Martı́n H. Escardó and Paulo Oliva, Bar recursion and products of selection functions, CoRR abs/1407.7046

(2014).
[5] Hugo Herbelin, A constructive proof of dependent choice, compatible with classical logic, Logic in Computer

Science, LICS 2012, Proceedings, IEEE Computer Society, 2012, pp. 365–374.
[6] J.-L. Krivine, Dependent choice, ‘quote’ and the clock, Th. Comp. Sc. 308 (2003), 259–276.

2

