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It is well-known that the formulation as sequent calculi of logics and type theories is to
be preferred, if one is interested in a formalism suitable for proof search [13, 10]. But in type
theories one needs not only to search for proofs and proof terms, but also to compute with them.
Now it is not too controversial to say that not everything is understood regarding computation
with proof terms in the sequent calculus format, as progress in the matter is still seen recently,
e.g. either in the computational interpretation of cut-elimination on focused proofs [15, 1], or
in the understanding of variables in sequent proof terms [4]. Hence “structural” matters about
sequent proof terms still hinder the formulation of type theories as sequent calculi.

In the past decade two of the authors proposed and studied the system λJm as a vehicle for
studying reduction procedures in the sequent calculus [6, 7]. The approach was modular, with
the system designed to be as simple as possible, so that only the intricacies of the reduction
procedures remained: the logic was the simplest one (intuitionistic implications as sole connec-
tive); the cut=redex paradigm [8, 2] was not followed, so that variables in proof terms could
be treated as ordinary term variables [4]; substitution was treated as a meta-operation, with
the corresponding cut-rule treated as an admissible typing rule, from which the call-by-name
character of cut-elimination followed [2].

But, in order not to fall in mere natural deduction with generalized elimination [16, 9], actual
use of the formulas in the l.h.s. of sequents was permitted in the inference process of λJm.
This entails, at the level of proof terms, the existence of a primitive mechanism of vectorization
of arguments, familiar from the λ-calculus [8]; and, at the level of reduction, not only that cut-
elimination corresponds to the “multiary”[14] version of the βπ-reduction found in λ-calculus
with generalized applications [9], but also the existence of a second reduction process. The
latter may be seen as the η-reduction for the µ̃-operator [2], but is named µ-reduction, as in
[14], where it was introduced.

Finally, a third process of reduction, most typical of sequent calculus, has been permanently
considered in the study of λJm: permutative conversion [3, 14]. The three reduction procedures
were studied in isolation for their properties and computational interpretation, but also in their
possible combinations. At some point, the authors attempted (in [5]) not only some system-
atization of the multiplicity of subsystems and kinds of normal forms that such combinations
give rise to, but also some harmony out of the syntactic noise and explosion. Recent progress
allows us to say now that we could have done better, and that is what we intend to report in
this talk.

Following [12, 3], let us call normal a cut-free term that is irreducible for permutative
conversion (the justification of the terminology is that normal terms are in bijection with normal
natural deductions). Normal terms have a characterization that is applicable to terms in general
(not necessarily cut-free). We call natural the terms which enjoy such characterization, so
that a sequent proof term is normal iff it is natural and cut-free. Natural terms are closed
for cut-elimination and µ-reduction. We can now give a simple and transparent computational
interpretation of this subsystem: non-values consist of a term “applied” to a kind of generalized
argument, consisting of a list of lists of ordinary arguments, with cut-elimination allowing the
call of a function with the first argument of the first list (β rule), or appending two such lists
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of lists (π rule), and with µ being an operation of flattening. So, the generality of generalized
applications is here reduced to a second vectorization mechanism. In addition, we characterize
proof search for normal proofs, identifying the relaxation of the LJT focusing discipline [8, 11]
that it follows.

We also embrace the view that permutative conversion is a process of conversion to natural
form, named γ for short, and amend the definition of γ found in [5] after having realized that
the substitution process involved is a refinement of ordinary term substitution. Conversion to
natural form is then studied systematically together with cut-elimination and µ-reduction to
know when a procedure commutes and/or preserves another. Based on this analysis, we can
conclude that a proof in λJm determines not one, but eight possibly distinct cut-free proofs.
We also see how to combine γ-reduction and µ-reduction in order to define focalization - a
process of reduction to the LJT -form - and observe the commutation of cut-elimination with
focalization. Finally, since conversion to natural form commutes with cut-elimination, we see
that the two immediate senses for the concept of normalization in λJm, either conversion of
cut-free terms to normal form, or cut-elimination in the natural subsystem, are coherent and
have a common generalization to the entire set of proof terms.
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