Answer Set Programming in Intuitionistic Logic

Aleksy Schubert and Pawel Urzyczyn'

University of Warsaw
[alx,urzy] @mimuw.edu.pl

Abstract

We propose the first interpretation of propositional answer set programming (ASP) in
terms of intuitionistic proof theory, in particular in terms of simply typed lambda calculus.
While connections between ASP and intuitionistic logic are well-known, they usually take
the form of characterizations of stable models with the help of some intuitionistic theories
represented by specific classes of Kripke models. As such the known results are model-
theoretic rather than proof-theoretic. In contrast, we propose an interpretation of ASP in
terms of constructive proofs.

Answer Set Programming (ASP) is a programming paradigm originated from logic programming
with negation understood as “fixpoint” [I}, 2, [3]. The paradigm proved useful by reducing search
problems to so caled stable models of declarative programs.

It has been observed long ago [5] [6],[7] that ASP can be interpreted using certain intuitionistic
theories or intermediate logics, of which equilibrium logic of Pearce [7] is the most fundamental
example. This is commonly summarized as applying intuitionistic logic to ASP. But what is
actually done is representing answer sets as specific Kripke models (often two-state models).

We propose another way to interpret ASP in intuitionistic logic, namely we want to represent
ASP inference (entailment in stable models) by intuitionistic provability. We use the ordinary
intuitionistic logic (without any additional axioms) for this purpose. Our proof-theoretical
account brings new insights to the operational semantics of answer set programming. This
seems to suggest that intuitionistic provers can serve as natural ASP-solvers. Yet differently,
perhaps intuitionistic logic (together with its highly intuitive and natural lambda-notation)
should itself be seen as a programming paradigm, competitive to ASP?

In the present note we only consider propositional ASP and we reduce it to the implicational
fragment (in particular no negation is needed) of propositional intuitionistic logic (IPC). We
believe this approach should turn out very flexible by easily accomodating various extensions
of ASP. In particular, a similar approach should be applicable to first-order ASP.

Propositional ASP: A literal is a propositional atom or its negation. A clause is an expres-
sion of the form X :— X;,..., X,,, where X is a propositional atom and X1, ..., X, are literals.
A program is a finite set of clauses. A model is a set M of atoms, identified with a valuation vy,
such that vy (X) = true if and only if X € M. Given a program P and a model M, we obtain
PM from P as follows. First, for all X ¢ M, we delete =X from the rhs of all clauses of P.
Then, for all X € M, delete all clauses of P with =X at the rhs. Now the interpretation of P
under M, denoted I(P, M), is defined as the least fixed point of the operator:
F(S8) = SU{X | there is a clause X :— X,..., X,, in PM such that all X; are in S}.

A model M is a stable model of P (or it is an answer set for P) ifft M = I(P,M). We also
say that P entails an atom X under SMS, written P Egps X, iff every stable model of P
satisfies X. It is known [2], 4] that the existence of a stable model and the entailment under
SMS are, respectively, NP and co-NP complete problems.



Intuitionistic logic: We consider formulas of minimal propositional logic with — as the only
propositional connective. That is, our formulas are just simple types, and intuitionistic proofs
can be identified with simply-typed lambda-terms.

Given a program P we define an implicational formula ¢ such that P entails X under
stable model semantics if and only if ¢ is intuitionistically provable. Let Xi,..., X, be all
propositional atoms occurring in P, including X. Without loss of generality we assume that
X,; and —X; never occur together in the rhs of a clause.

Assume that P consists of m clauses, numbered from 1 to m. The vocabulary of ¢ consists

of atoms 0,1,...,m, X1,..., Xn, X1,.., Xn, X1l ..., X, X1?7..., X, 2, A, B, Ky,...,K,,.

The formula ¢ has the form ¢ — --- — ¢4 — 0. The assumption formulas 91, ...,y are
defined below. The first n assumptions are as follows: o
P1=(X1—-1)— (X1 —1)—0, Y =(Xp —=n)—= (Xp—n)—>n—1

The next m assumptions are the clauses of P, where every atom X is replaced by X! and
every =X is replaced by X. Then we have three formulas: X — n, A — n, B — n, with
target n. For every i = 1,...,n, there are assumptions X; — X;! = A and X; — X,;? — B. For
i =1,...,n, thereis an assumption (X;? — K,) = -+ = (X;? = K, ) = X;7, where s1,..., s,
are (numbers of) all the clauses of P with target X;.

If the atom X; occurs at the rhs of the sth clause of P then there is an assumption X;? — K.
And if =X, occurs at the rhs of the sth clause of P then there is an assumption X; — K.

The formulas naturally reflect the semantical character of the definition of ASP. Their
intended meaning is as follows: Formulas v1,...,%, choose a binary valuation of atoms in
a certain model. In order to prove 0 one proves n under assumptions representing every model.
Now there are three ways in which the entailment P = X holds in a stable model: either X
holds, or the model is unstable because P is unsound (proves too much) or the model is unstable
because P is incomplete (does not prove what is needed). The assumption X — n can be used
to complete the proof when X holds in the model. The two other possibilities are represented
by A and B, respectively. One proves A when P is unsound for our model: it forces some X; to
hold (that is, X; € I(P,M)), but X, is chosen. Proving B means that P is unable to derive
an atom X; which is present in the model. The propositional atoms X? and K are understood
as “X has no proof” and “the target of the sth clause has no proof”, respectively. The formula
with target X;? should be understood as follows: no clause with target X; has a proof unless
such a proof recursively refers to the proof goal Xj.

References

[1] Gerhard Brewka, Thomas Eiter, and Mirostaw Truszczynski. Answer set programming at a glance.
Commun. ACM, 54(12):92-103, December 2011.

[2] Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint? In PODS 88,
pages 231-239, ACM, 1988.

[3] Vladimir Lifschitz. What is answer set programming? In AAAI’08, pages 1594-1597. AAAI Press,
2008.

[4] Wiktor Marek and Mirostaw Truszczyriski. Autoepistemic logic. J. ACM, 38(3):587—618, July 1991.

[5] Mauricio Osorio, Juan A. Navarro, and José Arrazola. Applications of intuitionistic logic in answer
set programming. Theory Pract. Log. Program., 4(3):325-354, May 2004.

[6] David Pearce. Stable inference as intuitionistic validity. The Journal of Logic Programming,
38(1):79-91, 1999.

[7] David Pearce. Equilibrium logic. Annals of Mathematics and Artificial Intelligence, 47(1-2):3-41,
2006.



